ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (15)
  • American Geophysical Union (AGU)
  • 2010-2014  (15)
  • 1965-1969
  • 1960-1964
  • 2014  (15)
  • 1
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 1-32, ISBN: 9781107641655
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 35-94, ISBN: 9781107641655
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-04
    Description: Analysis of bioconvection in dilute suspensions of bottom-heavy but randomly swimming micro-organisms is commonly based on a model introduced in 1990. This couples the Navier–Stokes equations, the cell conservation equation and the Fokker–Planck equation (FPE) for the probability density function for a cell’s swimming direction ${p}$, which balances rotational diffusion against viscous and gravitational torques. The results have shown qualitative agreement with observation, but the model has not been subjected to direct quantitative testing in a controlled experiment. Here, we consider a simple configuration in which the suspension is contained in a circular cylinder of radius $R$, which rotates at angular velocity ${ mOmega}$ about a horizontal axis. We solve the FPE and calculate the cells’ mean swimming velocity, which proves to be horizontal when $B{mOmega}gg 1$, where $B$ is the gyrotactic reorientation time scale. Then we compute the cell concentration distribution, which is non-uniform only in a thin boundary layer near the cylinder wall when ${it eta}^{2}={mOmega}R^{2}/Dgg 1$, where $D$ is the cells’ translational diffusivity. The fact that cells are denser than water means that this concentration distribution drives a perturbation to the underlying solid-body rotational flow which can be calculated analytically. The predictions of the theory are evaluated in terms of a proposed experimental realisation of the configuration, using suspensions of the alga Chlamydomonas nivalis or Chlamydomonas reinhardtii or the algal colony Volvox.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-22
    Description: Hydrodynamic focusing of cells along the region of the most rapid flow is a robust feature in downflowing suspensions of swimming gyrotactic microorganisms. Experiments performed in a downward pipe flow have reported that the focused beam-like structure of the cells is often unstable and results in the formation of regular-spaced axisymmetric blips, but the mechanism by which they are formed is not well understood. To elucidate this mechanism, in this study, we perform a linear stability analysis of a downflowing suspension of randomly swimming gyrotactic cells in a two-dimensional vertical channel. On increasing the flow rate, the basic state exhibits a focused beam-like structure. It is found that this focused beam is unstable with the varicose mode, the spatial structure, wavelength, phase speed and behaviour with the flow rate of which are remarkably similar to those of the blip instability in the pipe flow experiment. To understand the physical mechanism of the varicose mode, we perform an analysis which calculates the term-by-term contribution to the instability. It is shown that the leading physical mechanism in generating the varicose instability originates from the horizontal gradient in the cell-swimming-vector field formed by the non-uniform shear in the base flow. This mechanism is found to be supplemented by cooperation with the gyrotactic instability mechanism observed in uniform suspensions. © © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-04
    Description: We consider two-dimensional one-sided convection of a solute in a fluid-saturated porous medium, where the solute decays via a first-order reaction. Fully nonlinear convection is investigated using high-resolution numerical simulations and a low-order model that couples the dynamic boundary layer immediately beneath the distributed solute source to the slender vertical plumes that form beneath. A transient-growth analysis of the boundary layer is used to characterise its excitability. Three asymptotic regimes are investigated in the limit of high Rayleigh number Ra, in which the domain is considered deep, shallow or of intermediate depth, and for which the Damköhler number Da is respectively large, small or of order unity. Scaling properties of the flow are identified numerically and rationalised via the analytic model. For fully established high-Ra convection, analysis and simulation suggest that the time-averaged solute transfer rate scales with Ra and the plume horizontal wavenumber with Ra1/2, with coefficients modulated by Da in each case. For large Da, the rapid reaction rate limits the plume depth and the boundary layer restricts the rate of solute transfer to the bulk, whereas for small Da the average solute transfer rate is ultimately limited by the domain depth and the convection is correspondingly weaker. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-17
    Description: Motivated by processes occurring during CO〈inf〉2〈/inf〉 sequestration in an underground saline aquifer, we examine two-dimensional convection in a finite-depth porous medium induced by a solute introduced at the upper boundary. Once dissolved, the solute concentration is assumed to decay via a first-order chemical reaction, restricting the depth over which solute can penetrate the domain. Using spectral and asymptotic methods, we explore the resulting convective mixing using linear stability analysis, computation of nonlinear steady solution branches and time-dependent simulations, as a function of Rayleigh number, Damköhler number and domain size. Long-wave eigenmodes show how deep recirculation can be driven by a shallow solute field while explicit approximations are derived for the growth of short-wave eigenmodes. Steady solution branches undergo numerous secondary bifurcations, forming an intricate network of mixed states. Although many of these states are unstable, some play an important role in organising the phase space of time-dependent states, providing approximate bounds for time-averaged mixing rates. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-22
    Description: SUMMARYMineralized soil nitrogen (N) is an important source of N for grassland production. Some soils can supply large quantities of plant-available N through mineralization of soil organic matter. Grass grown on such soils require less fertilizer N applications per unit yield. A reliable, accurate and user-friendly method to account for soil N supply potential across a large diversity of soils and growing conditions is needed to improve N management and N recommendations over time. In the current study, the effectiveness of chemical N tests and soil properties to predict soil N supply for grass uptake across 30 Irish soil types varying in N supply potential was investigated under controlled environmental conditions. The Illinois soil N test (ISNT) combined with soil C : N ratio provided a good estimate of soil N supply in soils with low residual mineral N. Total oxidized N (TON) had the largest impact on grass dry matter (DM) yield and N uptake across the 30 soil types, declining in its influence in later growth periods. This reflected the high initial mineral N levels in these soils, which declined over time. In the current study, a model with ISNT-N, C : N and TON (log TON) best explained variability in grass DM yield and N uptake. All three rapid chemical soil tests could be performed routinely on field samples to provide an estimate of soil N supply prior to making N fertilizer application decisions. It can be concluded that these soil tests, through their assessment of soil N supply potential, can be effective tools for N management on grassland; however, field studies are needed to evaluate this under more diverse growing conditions.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-01
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-12
    Description: We propose an analytical model for the determination of the microstructure and stresses in a sheared suspension that consists of a dense monolayer of identical spheres in a viscous fluid. We calculate the anisotropy in the orientational distribution of spheres, associated with a short-range repulsive force assumed to act between the spheres, and a particle pressure and normal stress difference that result from this anisotropy. The microstructure and stresses are similar to those measured in Stokesian dynamics simulations. © Cambridge University Press 2014.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-28
    Description: In every turbulent flow with non-zero viscosity, heat is generated by viscous friction. This heat is then mixed by the velocity field. We consider how heat fluctuations generated in this way are injected and distributed over length scales in isotropic turbulence. A triadic closure is derived and numerically integrated. It is shown how the heat fluctuation spectrum depends on the Reynolds and Prandtl numbers. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...