ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-30
    Description: It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two...
    Keywords: The Modern View of Domestication Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-30
    Description: Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent...
    Keywords: The Modern View of Domestication Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-19
    Description: The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcussen, Thomas -- Sandve, Simen R -- Heier, Lise -- Spannagl, Manuel -- Pfeifer, Matthias -- International Wheat Genome Sequencing Consortium -- Jakobsen, Kjetill S -- Wulff, Brande B H -- Steuernagel, Burkhard -- Mayer, Klaus F X -- Olsen, Odd-Arne -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):1250092. doi: 10.1126/science.1250092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. ; Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. simen.sandve@nmbu.no. ; Stromsveien 78 B, 0663 Oslo, Norway. ; Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany. ; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway. ; The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035499" target="_blank"〉PubMed〈/a〉
    Keywords: *Bread ; *Evolution, Molecular ; Genes, Plant ; *Genome, Plant ; *Hybridization, Genetic ; Phylogeny ; Polyploidy ; Triticum/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-19
    Description: Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfeifer, Matthias -- Kugler, Karl G -- Sandve, Simen R -- Zhan, Bujie -- Rudi, Heidi -- Hvidsten, Torgeir R -- International Wheat Genome Sequencing Consortium -- Mayer, Klaus F X -- Olsen, Odd-Arne -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):1250091. doi: 10.1126/science.1250091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany. ; Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway. ; Department of Chemistry, Biotechnology and Food Science, NMBU, 1432 Aas, Norway. ; Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway. odd-arne.olsen@nmbu.no.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035498" target="_blank"〉PubMed〈/a〉
    Keywords: *Bread ; Edible Grain/genetics ; Endosperm/genetics ; Gene Dosage ; Gene Expression Regulation, Plant ; *Genome, Plant ; Plant Proteins/genetics ; *Polyploidy ; Transcriptome ; Triticum/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...