ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • 2010-2014  (2)
  • 2000-2004
  • 2014  (2)
Collection
Years
  • 2010-2014  (2)
  • 2000-2004
Year
  • 1
    Publication Date: 2014-04-25
    Description: The ability to precisely date climate proxies is central to the reconstruction of past climate variations. To a degree, all climate proxies are affected by age uncertainties, which are seldom quantified. This article proposes a probabilistic age model for proxies based on layer-counted chronologies, and explores its use for annually banded coral archives. The model considers both missing and doubly counted growth increments (represented as independent processes), accommodates various assumptions about error rates, and allows one to quantify the impact of chronological uncertainties on different diagnostics of variability. In the case of a single coral record, we find that time uncertainties primarily affect high-frequency signals but also significantly bias the estimate of decadal signals. We further explore tuning to an independent, tree-ring-based chronology as a way to identify an optimal age model. A synthetic pseudocoral network is used as testing ground to quantify uncertainties in the estimation of spatiotemporal patterns of variability. Even for small error rates, the amplitude of multidecadal variability is systematically overestimated at the expense of interannual variability (El Niño–Southern Oscillation, or ENSO, in this case), artificially flattening its spectrum at periods longer than 10 years. An optimization approach to correct chronological errors in coherent multivariate records is presented and validated in idealized cases, though it is found difficult to apply in practice due to the large number of solutions. We close with a discussion of possible extensions of this model and connections to existing strategies for modeling age uncertainties.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-05
    Description: We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...