ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rutgers van der Loeff, Michiel M; Cassar, Nicolas; Nicolaus, Marcel; Rabe, Benjamin; Stimac, Ingrid (2014): The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles. Journal of Geophysical Research: Oceans, 119(5), 2735-2751, https://doi.org/10.1002/2013JC009321
    Publication Date: 2024-07-01
    Description: Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.
    Keywords: Alpha-scintillation; Arctic Ocean; ARK-XXVI/3; AWI_MarGeoChem; Calculated; Date/Time of event; DEPTH, water; Elevation of event; Event label; Gamma-ray spectrometry; Laptev Sea; Latitude of event; Longitude of event; Marine Geochemistry @ AWI; MUWS; Polarstern; PS78/201-5; PS78/205-3; PS78/209-6; PS78/212-8; PS78/218-5; PS78/222-7; PS78/227-6; PS78/230-4; PS78/235-5; PS78/239-4; PS78/245-3; PS78/250-4; PS78/257-3; PS78/271-3; PS78/273-3; PS78/276-3; PS78/280-3; PS78/285-3; PS78 TransArc; Radium-226; Radium-226, normalized to salinity 35; Radium-226, standard deviation; Radon-222; Radon-222, standard deviation; Radon-222/Radium-226 activity ratio; Radon-222/Radium-226 activity ratio, standard deviation; Salinity; Water Multi Sampler
    Type: Dataset
    Format: text/tab-separated-values, 703 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Earth Systems and Environmental Sciences, (Reference Module in Earth Systems and Environmental Sciences), Amsterdam, Elsevier, 16 p., pp. 1-16, ISBN: 978-0-12-409548-9
    Publication Date: 2014-05-19
    Description: Natural radioactivity provides tracers in a wide range of characteristic timescales and reactivities, which can be used as tools to study the rate of reaction and transport processes in the ocean. Apart from cosmogenic nuclides and the long-lived radioisotope K-40, the natural radioactivity in the ocean is primarily derived from the decay series of three radionuclides that were produced in the period of nucleosynthesis preceding the birth of our solar system: Uranium-238, Thorium-232, and Uranium-235 (a fourth series, including Uranium-233, has already decayed away). The remaining activity of these so-called primordial nuclides in the Earth's crust, and the range of half-lives and reactivities of the elements in their decay schemes, control the present distribution of U-series nuclides in the ocean
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-29
    Description: Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea-ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, Aug/Sep 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 631-644, doi:10.4319/lom.2012.10.631.
    Description: Intercomparision of 234Th measurements in both water and particulate samples was carried out between 15 laboratories worldwide, as a part of GEOTRACES inter-calibration program. Particulate samples from four different stations namely BATS (both shallow and deep) and shelf station (shallow) in Atlantic and SAFE (both shallow and deep) and Santa Barbara station (shallow) in Pacific were used in the effort. Particulate intercalibration results indicate good agreement between all the participating labs with data from all labs falling within the 95% confidence interval around the mean for most instances. Filter type experiments indicate no significant differences in 234Th activities between filter types and pore sizes (0.2-0.8 μm). The only exception are the quartz filters, which are associated with 10% to 20% higher 234Th activities attributed to sorption of dissolved 234Th. Flow rate experiments showed a trend of decreasing 234Th activities with increasing flow rates (2-9 L min-1) for 〉 51 μm size particles, indicating particle loss during the pumping process. No change in 234Th activities on small particles was observed with increasing flow-rates. 234Th intercalibration results from deep water samples at SAFe station indicate a variability of 〈 3% amongst labs while dissolved 234Th data from surface water at Santa Barbara Station show a less robust agreement, possibly due to the loss of 234Th from decay and large in-growth corrections as a result of long gap between sample collection and processing.
    Description: This research is funded by NSF Chemical Oceanography program. LM will like to thank Fisheries and Oceans Canada for support. PM is supported through ICREA Academia funded by Generalitat de Catalunya. The International Atomic Energy Agency is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 179-213, doi:10.4319/lom.2012.10.179.
    Description: Nineteen labs representing nine nations participated in the GEOTRACES intercalibration initiative that determined concentrations of 232Th, 230Th, 231Pa, or 10Be in seawater, suspended particles or sediments. Results generally demonstrated good agreement among labs that analyzed marine sediments. Two sets of seawater samples, aliquots of particulate material filtered in situ, and/or aliquots of biogenic sediments were distributed to participating labs. Internal consistency among participating labs improved substantially between the first and second set of seawater samples. Contamination was a serious problem for 232Th. Standard Niskin bottles introduced no detectable contamination, whereas sample containers, reagents, and labware were implicated as sources of contamination. No detectable differences in concentrations of dissolved 232Th, 230Th, or 231Pa were observed among samples of seawater filtered through Nuclepore, Supor, or QMA (quartz) filters with pore diameters ranging between 0.4 and 1.0 μm. Isotope yield monitors equilibrate with dissolved Th in seawater on a time scale of much less than 1 day. Samples of filtered seawater acidified to a pH between 1.7 and 1.8 experienced no detectable loss of dissolved Th or Pa during storage for up to 3 years. The Bermuda Atlantic Time Series station will serve as a GEOTRACES baseline station for future intercalibration of 232Th and 230Th concentrations in seawater. Efforts to improve blanks and standard calibration are ongoing, as is the development of methods to determine concentrations of particulate nuclides, tests of different filtration methods, and an increasing awareness of the need to define protocols for reporting uncertainties.
    Description: Funding for sample collection and for the coordination of this intercalibration of Th isotopes, 231Pa and 10Be was provided by the U.S. NSF (to Anderson, Moran, and Edwards). Funding from NSF (to R. Francois and to K. Buesseler) also supported the collection of previously unpublished data that are presented here.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...