ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2014-08-01
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-02-08
    Beschreibung: Iron is the most important micronutrient in the ocean, but the nature and magnitude of its sources and sinks to the ocean are poorly constrained. Here we assess our understanding of the sources and sinks of iron in margin environments by synthesizing observations from the U.S. GEOTRACES GP16 Eastern Tropical Pacific Zonal Transect (EPZT) cruise near the Peru margin. GP16 observations showed elevated dissolved iron (dFe) concentrations along the margin, but a larger westward plume of dFe at slope depths (1000–3000 m) in oxygenated waters, rather than at shelf depths (100–300 m) in oxygen deficient waters. We examine the potential explanations for this unexpected observation. Multiple tracers from GP16 suggest that sediment resuspension was important at slope depths, which would lead to enhanced benthic flux of dFe above what was previously measured. The difference in the apparent persistence and penetration of shelf versus slope plumes of dFe into the interior of the ocean likely results from faster removal rates of the shelf dFe compared to slope dFe. The dFe sourced from the shelf was almost entirely in the dFe(II) form, whereas dFe sourced from the slope was almost entirely in the dFe(III) form. Although benthic dFe(II) diffuses into oxygen deficient overlying waters, there is still oxidation of dFe(II), which precipitates to particulate Fe(III). In contrast, the slope plume appears to persist in a stabilized dFe(III) form. We hypothesize that sediment porewaters with moderate organic carbon delivery to sediments and shallow oxygen penetration are especially good sources of persistent dFe to the water column.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.
    Beschreibung: We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.
    Beschreibung: This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-05-26
    Beschreibung: Dataset: GN01 Size-fractionated major and minor particles
    Beschreibung: Size-fractionated major and minor particle composition and concentration from the U.S. GEOTRACES Arctic Cruise (GN01) in 2015. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/807340
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1535854, NSF Division of Ocean Sciences (NSF OCE) OCE-1438977
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: This paper is not subject to U.S. copyright. The definitive version was published in Environmental Chemistry 11 (2014): 10-17, doi:10.1071/EN13075.
    Beschreibung: It is a well known truism that natural materials are inhomogeneous, so analysing them on a point-by-point basis can generate a large volume of data, from which it becomes challenging to extract understanding. In this paper, we show an example in which particles taken from the ocean in two different regions (the Western Subarctic Pacific and the Australian sector of the Southern Ocean, south of Tasmania) are studied by Fe K-edge micro X-ray absorption near-edge spectroscopy (μXANES). The resulting set of data consists of 209 spectra from the Western Subarctic Pacific and 126 from the Southern Ocean. We show the use of principal components analysis with an interactive projection visualisation tool to reduce the complexity of the data to something manageable. The Western Subarctic Pacific particles were grouped into four main populations, each of which was characterised by spectra consistent with mixtures of 1–3 minerals: (1) Fe3+ oxyhydroxides + Fe3+ clays + Fe2+ phyllosilicates, (2) Fe3+ clays, (3) mixed-valence phyllosilicates and (4) magnetite + Fe3+ clays + Fe2+ silicates, listed in order of abundance. The Southern Ocean particles break into three clusters: (1) Fe3+-bearing clays + Fe3+ oxyhydroxides, (2) Fe2+ silicates + Fe3+ oxyhydroxides and (3) Fe3+ oxides + Fe3+-bearing clays + Fe2+ silicates, in abundance order. Although there was some overlap between the two regions, this analysis shows that the particulate Fe mineral assemblage is distinct between the Western Subarctic Pacific and the Southern Ocean, with potential implications for the bioavailability of particulate Fe in these two iron-limited regions. We then discuss possible advances in the methods, including automatic methods for characterising the structure of the data.
    Beschreibung: The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. Collection of samples for the VERTIGO project was supported by the US National Science Foundation Program in Chemical Oceanography to Ken Buesseler and the US Department of Energy, Office of Science, Biological and Environmental Research Program to Jim Bishop. The SAZ-SENSE project was supported by the Australian Government Cooperative Research Centres Programme. Collection of spectroscopic data by PJL was supported through the WHOI Postdoctoral Scholar Program, WHOI Independent Study Award and NSF Chemical Oceanography.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Copernicus Publications on behalf of the European Geosciences Union
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 1177-1198, doi:10.5194/bg-11-1177-2014.
    Beschreibung: The sinking of particulate organic carbon (POC) is a key component of the ocean carbon cycle and plays an important role in the global climate system. However, the processes controlling the fraction of primary production that is exported from the euphotic zone (export ratio) and how much of it survives respiration in the mesopelagic to be sequestered in the deep ocean (transfer efficiency) are not well understood. In this study, we use a three-dimensional, coupled physical–biogeochemical model (CCSM–BEC; Community Climate System Model–ocean Biogeochemical Elemental Cycle) to investigate the processes controlling the export of particulate organic matter from the euphotic zone and its flux to depth. We also compare model results with sediment trap data and other parameterizations of POC flux to depth to evaluate model skill and gain further insight into the causes of error and uncertainty in POC flux estimates. In the model, export ratios are mainly a function of diatom relative abundance and temperature while absolute fluxes and transfer efficiency are driven by mineral ballast composition of sinking material. The temperature dependence of the POC remineralization length scale is modulated by denitrification under low O2 concentrations and lithogenic (dust) fluxes. Lithogenic material is an important control of transfer efficiency in the model, but its effect is restricted to regions of strong atmospheric dust deposition. In the remaining regions, CaCO3 content of exported material is the main factor affecting transfer efficiency. The fact that mineral ballast composition is inextricably linked to plankton community structure results in correlations between export ratios and ballast minerals fluxes (opal and CaCO3), and transfer efficiency and diatom relative abundance that do not necessarily reflect ballast or direct ecosystem effects, respectively. This suggests that it might be difficult to differentiate between ecosystem and ballast effects in observations. The model's skill in reproducing sediment trap observations is equal to or better than that of other parameterizations. However, the sparseness and relatively large uncertainties of sediment trap data makes it difficult to accurately evaluate the skill of the model and other parameterizations. More POC flux observations, over a wider range of ecological regimes, are necessary to thoroughly evaluate and test model results and better understand the processes controlling POC flux to depth in the ocean.
    Beschreibung: Support for this work was provided by WHOI Ocean and Climate Change Institute and NSF grants OCE-0960880 and AGS-1048827.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-05-26
    Beschreibung: Dataset: GP15 Bottle
    Beschreibung: Bottle data collected by the GTC (GEOTRACES Trace element Carousel) and ODF (Ocean Data Facility) CTD rosettes, underway, and tow fish on the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15) from September to November 2018 on R/V Roger Revelle. Data from the different sampling systems was compiled into one file by ODF. For complete acquisition and processing information, refer to the cruise report. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/777951
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1657781, NSF Division of Ocean Sciences (NSF OCE) OCE-1658318, NSF Division of Ocean Sciences (NSF OCE) OCE-1657944
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-05-26
    Beschreibung: Dataset: GP15 CTD ODF
    Beschreibung: CTD profiles from the ODF rosette on the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15) from September to November 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/778168
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1657781, NSF Division of Ocean Sciences (NSF OCE) OCE-1658318, NSF Division of Ocean Sciences (NSF OCE) OCE-1657944
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...