ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (94)
  • ASTROPHYSICS
  • Life and Medical Sciences
  • 2010-2014  (94)
  • 1950-1954
  • 2013  (94)
  • 11
    Publication Date: 2019-07-13
    Description: Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-28080 , Lunar aud Plauetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27842 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Spherules of glass varying in size from a few micrometres to a few millimetres are common in the lunar regolith. While some of these glass beads are products of pyroclastic fire fountains others originate as impact melt ejected from the target that breaks into small droplets and solidifies as spherical particles while raining back to the lunar surface. These glasses preserve information about the chemical composition of the target and often contain sufficient amount of radioactive nuclides such as 40K to enable Ar-40-Ar-39 dating of individual beads. Studies measuring the age of glass beads have been used in attempts to establish variations in the flux of impactors hitting the Moon, particularly during the period that postdates the formation of major impact basins [1,2]. These studies proposed a possibility of spike in the impact flux about 800 Ma [2] and over the last 400 Ma [1]. More recently U-Th-Pb isotopic systems have been also utilized to determine the age of impact glasses from the Apollo 17 regolith [3]. Our aim is to extend the application of the U-Pb system in impact glasses to spherules isolated from Apollo 14 soil 14163 in an attempt to further investigate the applicability of this isotopic system to the chronology of impact glass beads and gain additional information on the impact flux in the inner Solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27960 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Data obtained at visible and near-infrared wavelengths by OMEGA on Mars Express and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al- OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. To constrain the abundances of these phyllosilicates, spectral analyses of mixtures are needed. We report on our effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/ hydroxylated silicates with each other and with two analogs for other Martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass, hereafter referred to as palagonite). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al-rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 micron.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN7505 , Lunar and Planetary Science Conference (LPSC) 2013; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory Curiosity rover sampled the aeolian bedform called Rocknest as its first solid samples to be analyzed by the analytical instruments CheMin and SAM. The instruments ingested aliquots from a sieved sample of less than 150 micrometer grains. As discussed in other reports at this conference [e.g., 1], CheMin discovered many crystalline phases, almost all of which are igneous minerals, plus some 10s of percent of x-ray amorphous material. The SAM instrument is focused on understanding volatiles and possible organics in the fines, performing evolved gas analysis (EGA) with the SAM quadrapole mass spectrometer (QMS), isotope measurements using both the QMS and the tunable laser spectrometer (TLS), which is sensitive to CO2, water and methane, and organics with the gas chromatograph mass spectrometer (GCMS). As discussed in the abstract by Franz et al. [2] and others, EGA of Rocknest fines revealed the presence of significant amounts of H2O as well as O-, C- and S-bearing materials. SAM has also tasted the martian atmosphere several times, analyzing the volatiles in both the TLS and QMS [e.g., 3,4]. This abstract will focus on presentation of initial hydrogen isotopic data from the TLS for Rocknest soils and the atmosphere, and their interpretation. Data for CO2 isotopes and O isotopes in water are still being reduced, but should be available by at the conference.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27925 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: The massive eruption at 40 deg. N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as "beacons" (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C2H4 mole fraction of 5.9 +/- 4.5 x 10(exp -7) at 0.5 mbar, and from Celeste data it gives 2.7 +/- 0.45 x 10(exp -6) at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN6335
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: A Trojan Tour and Rendezvous mission was specifically targeted by the 2011 Planetary Decadal Survey Committee as a high priority mission for the New Frontiers program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7906 , 44th Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The CI chondrites are primitive meteorites with bulk compositions matching the solar photosphere for all but the lightest elements. They have been extensively aqueously altered, and are composed primarily of fine-grained phyllosilicate matrix material which is host to carbonates, sulfates, sulfides, and minor amounts of olivine and pyroxene. The alteration, while extensive, is heterogeneous. For example, CI-chondrite cubanite and carbonate grains differ on mm to sub-mm scales, demonstrating multiple aqueous episodes. CI-chondrite variability is also evidenced by degree of brecciation, abundance and size of coarse-grained phyllosilicates, olivine and pyroxene abundance, as well as Ni-content and size of sulfide grains. Our previous work revealed Orgueil sulfide grains with variable Ni-contents, metal:S ratios, crystal structures and textures. We continue to explore the variability of CI-chondrite pyrrhotite (Po, (FeNi)1-xS) and pentlandite (Pn, (Fe,Ni)9S8) grains. We investigate the microstructure of sulfides within and among CI-chondrite meteorites in order to place constraints on the conditions under which they formed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-28076 , JSC-CN-28002 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27962 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: In 2003, three lunar meteorites were collected in close proximity to each other in the Dhofar region of Oman: Dhofar 925 (49 g), Dhofar 960 (35 g), and Dhofar 961 (22 g). In 2006, lunar meteorite Sayh al Uhaymir (SaU) 449 (16.5 g) was found about 100 km to the NE. Despite significant differences in the bulk composition of Dhofar 961 relative to Dhofar 925/960 and SaU 449 (which are identical to each other), these four meteorites are postulated to be paired based on their find locations, bulk composition, and detailed petrographic analysis. Hereafter, they will collectively be referred to as the Dhofar 961 clan. Comparison of meteorite and component bulk compositions to Lunar Prospector 5-degree gamma-ray data suggest the most likely provenance of this meteorite group is within the South Pole-Aitken Basin. As the oldest, largest, and deepest recognizable basin on the Moon, the composition of the material within the SPA basin is of particular importance to lunar science. Here we review and expand upon the geochemistry and petrography of the Dhofar 961 clan and assess the likelihood that these meteorites come from within the SPA basin based on their bulk compositions and the compositions and characteristics of the major lithologic components found within the breccia.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27961 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...