ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (2)
  • American Geophysical Union  (1)
  • Istituto Nazionale di Geofisica e Vulcanologia  (1)
  • American Chemical Society (ACS)
  • Institute of Physics
  • 2010-2014  (2)
  • 1960-1964
  • 2013  (2)
Collection
Publisher
Years
  • 2010-2014  (2)
  • 1960-1964
Year
  • 1
    Publication Date: 2017-04-04
    Description: Since the second half of the 1990s, the eruptive activity of Mount Etna has provided evidence that both explosive and effusive eruptions display periodic variations in discharge and eruption style. In this work, a multiparametric approach, consisting of comparing volcanological, geophysical, and geochemical data, was applied to explore the volcano's dynamics during 2009–2011. In particular, temporal and/or spatial variations of seismicity (volcano-tectonic earthquakes, volcanic tremor, and long-period and very long period events), ground deformation (GPS and tiltmeter data), and geochemistry (SO2 flux, CO2 flux, CO2/SO2 ratio) were studied to understand the volcanic activity, as well as to investigate magma movement in both deep and shallow portions of the plumbing system, feeding the 2011 eruptive period. After the volcano deflation, accompanying the onset of the 2008–2009 eruption, a new recharging phase began in August 2008. This new volcanic cycle evolved from an initial recharge phase of the intermediate-shallower plumbing system and inflation, followed by (i) accelerated displacement in the volcano's eastern flank since April 2009 and (ii) renewal of summit volcanic activity during the second half of 2010, culminating in 2011 in a cyclic eruptive behavior with 18 lava fountains from New Southeast Crater (NSEC). Furthermore, supported by the geochemical data, the inversion of ground deformation GPS data and the locations of the tremor sources are used here to constrain both the area and the depth range of magma degassing, allowing reconstructing the intermediate and shallow storage zones feeding the 2011 cyclic fountaining NSEC activity.
    Description: Published
    Description: 3519–3539
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Mt Etna ; seismology ; ground deformation ; geochemistry ; volcanology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: One of the main issues in seismic monitoring of active volcanic areas is the accurate location of earthquake hypocenters. Volcano-tectonic seismicity is often characterized by small magnitude swarms, recorded by few seismic stations with a high picking uncertainty. Sometimes events lacks clear S-wave arrivals, due to the nature of some volcanic sources. All these features, together with the complex crustal structure of volcanoes, makes the earthquake location problem critical in such areas. One of the most important effort for improving the quality of hypocenter location is the use of realistic 3D velocity models. In the last 10 years, several scientific papers proposed 2D and 3D velocity models for Mt. Vesuvius, Campi Flegrei and the Gulf of Naples. They comes from both active seismic data (VESUVIO 94, TOMOVES 96, MAREVES 97 and SERAPIS 2001 experiments) and from local earthquake tomography. In this report we propose a global unified velocity model spanning from Ischia island to Appennine Mts. that allows us to locate earthquakes in the Neapolitan volcanic areas and in the Gulf of Naples. This model comes from a weighted averaging of 5 tomographic velocity models and a background regional model. Most of the model provides only P-wave velocities, only 2 models, obtained through local earthquake tomography at Mt. Vesuvius and Campi Flegrei also gives a S-wave velocity estimate. We show the difference between this new model and the previous 1D models adopted for routine locations at INGV-Osservatorio Vesuviano. We also relocate some events, using non-linear techniques showing differences in hypocenter position from previous locations and the improvement in final traveltime residuals and location uncertainties.
    Description: Published
    Description: 375-390
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Volcano-tectonic seismicity ; 3D velocity model ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...