ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustics  (2)
  • Cybernetics, Artificial Intelligence and Robotics  (1)
  • 2010-2014  (3)
  • 2000-2004
  • 1980-1984
  • 1965-1969
  • 1940-1944
  • 1930-1934
  • 2013  (3)
  • 1
    Publication Date: 2019-07-13
    Description: This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.
    Keywords: Acoustics
    Type: NF1676L-16143 , NF1676L-16143 , Noise-Con 2013; Aug 26, 2013 - Aug 28, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Bone density loss and muscle atrophy are among the National Aeronautics and Space Administration's (NASA) highest concerns for crew health in space. Countless hours are spent maintaining an exercise regimen aboard the International Space Station (ISS) to counteract the effect of zero-gravity. Looking toward the future, NASA researchers are developing new compact and innovative exercise technologies to maintain crew health as missions increase in length and take humans further out into the solar system. The X1 Exoskeleton, initially designed for assisted mobility on Earth, was quickly theorized to have far-reaching potential as both an in-space countermeasures device and a dynamometry device to measure muscle strength. This lower-extremity device has the ability to assist or resist human movement through the use of actuators positioned at the hips and knees. Multiple points of adjustment allow for a wide range of users, all the while maintaining correct joint alignment. This paper discusses how the X1 Exoskeleton may fit NASA's onorbit countermeasures needs.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: JSC-CN-29100 , AIAA Space 2013; Sep 10, 2013 - Sep 12, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.
    Keywords: Acoustics
    Type: NF1676L-16142 , NF1676L-16142 , Noise-Con 2013; Aug 26, 2013 - Aug 28, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...