ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-24
    Description: A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stål), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-26
    Description: The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-29
    Description: The hot cathode ion source will tend to be unstable when operated with high power and long pulse. In order to achieve stable operation, a new regulation method based on the arc power (discharge power) feedback control was designed and tested on the hot cathode ion source test bed with arc discharge and beam extraction. The results show that the new regulation method can achieve stable arc discharge and beam extraction. It verifies the success of feedback control of arc source with arc power.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-30
    Description: Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. Scientific Reports 5 doi: 10.1038/srep10719
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-11
    Description: When combinatorial antibody libraries are rendered infectious for eukaryotic cells, the integrated antibody genotype and cellular phenotype become permanently linked and each cell becomes a selection system unto itself. These systems should be ideal for the identification of proteins and pathways that regulate differentiation so long as selection systems can...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-20
    Description: The POU family transcription factor Oct4 plays pivotal roles in regulating pluripotency and somatic cell reprogramming. Previous studies have indicated an important role for major groove contacts in Oct4–DNA recognition; however, the contributions of the RK motif in the POUh domain and the linker segment joining the two DNA-binding domains remain poorly understood. Here, by combining molecular modelling and functional assays, we find that the RK motif is essential for Oct4–DNA association by recognizing the narrowed DNA minor groove. Intriguingly, computational simulations reveal that the function of the RK motif may be finely tuned by H-bond interactions with the partially disordered linker segment and that breaking these interactions significantly enhances the DNA binding and reprogramming activities of Oct4. These findings uncover a self-regulatory mechanism for specific Oct4–DNA recognition and provide insights into the functional crosstalk at the molecular level that may illuminate mechanistic studies of the Oct protein family and possibly transcription factors in the POU family. Our gain-of-function Oct4 mutants might also be useful tools for use in reprogramming and regenerative medicine.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-12
    Description: A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-06
    Description: We report on a study that compares the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24. We find that the number of MCs did not decline in cycle 24, although the average sunspot number is known to have declined by ~40%. Despite the large number of MCs, their geoeffectiveness in cycle 24 was very low. The average Dst index in the sheath and cloud portions in cycle 24 was −33 nT and −23 nT, compared to −66 nT and −55 nT, respectively in cycle 23. One of the key outcomes of this investigation is that the reduction in the strength of geomagnetic storms as measured by the Dst index is a direct consequence of the reduction in the factor VB z (the product of the MC speed and the out-of-the-ecliptic component of the MC magnetic field). The reduction in MC-to-ambient total pressure in cycle 24 is compensated for by the reduction in the mean MC speed, resulting in the constancy of the dimensionless expansion rate at 1 AU. However, the MC size in cycle 24 was significantly smaller, which can be traced to the anomalous expansion of coronal mass ejections near the Sun reported by Gopalswamy et al. (2014a). One of the consequences of the anomalous expansion seems to be the larger heliocentric distance where the pressure balance between the CME flux ropes and the ambient medium occurs in cycle 24.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-26
    Description: This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100  μ m. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500  μ m piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/ μ m with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-14
    Description: [1]  We study two methods of predicting interplanetary (IP) shock location and strength in the inner heliosphere: 1) the ENLIL simulation and 2) the kilometric type II (kmTII) prediction. To evaluate differences in the performance of the first method, we apply two sets of CME parameters from the cone model fitting and flux-rope (FR) model fitting as input to the ENLIL model for 16 halo CMEs. The results show that the ENLIL model using the actual CME speeds from FR-fit provided an improved shock arrival time (SAT) prediction. The mean prediction errors for the FR and cone-model inputs are 4.90 ± 5.92 hr and 5.48 ± 6.11 hr, respectively. A deviation of 100 kms − 1 from the actual CME speed has resulted in a SAT error of 3.46 hr on average. [2]  The simulations show that the shock dynamics in the inner heliosphere agrees with the drag-based model. The shock acceleration can be divided as two phases: a faster deceleration phase within 50 R s and a slower deceleration phase at distances beyond 50 R s . The linear fit deceleration in phase 1 is about one order magnitude lager than that in phase 2. When applying the kmTII method to 14 DH-km CMEs, we found that combining the kmTII method with the ENLIL outputs improved the kmTII prediction. Due to a better modeling of plasma density upstream of shocks and the kmTII location, we are able to provide a more accurate shock time-distance and speed profiles. [3]  The mean kmTII prediction error using the ENLIL model density is 6.7 ± 6.4 hr; it is 8.4 ± 10.4 hr when the average solar wind plasma density is used. Applying the ENLIL density has reduced the mean kmTII prediction error by ∼ 2 hr and the standard deviation by 4.0 hr. Especially, when we applied the combined approach to two interacting events, the kmTII prediction error was drastically reduced from 29.6 hr to −4.9 hr in one case and 10.6 hr to 4.2 hr in the other. Furthermore, the results derived from the kmTII method and the ENLIL simulation, together with white-light data, provide a valuable validation of shock formation location and strength. Such information has important implications for SEP acceleration.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...