ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
  • 2012  (4)
Collection
Years
  • 2010-2014  (4)
Year
  • 1
    Publication Date: 2019-07-13
    Description: Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science.
    Keywords: Geophysics
    Type: M12-1943 , International Workshop on Instrumentation for Planetary Missions (IPM-2-12); Oct 10, 2012 - Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies.
    Keywords: Instrumentation and Photography
    Type: GSFC.JA.6690.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Future landed missions to Mars will be guided by two strategic directions: (1) sample return to Earth, for comprehensive compositional analyses, as recommended by the 2011 NRC Planetary Decadal Survey; and (2) preparation for human exploration in the 2030s and beyond, as laid out by US space policy. The resultant mission architecture will likely require high-fidelity in situ chemical/organic sample analyses within an extremely constrained resource envelope. Both science goals (e.g., MEPAG Goal 1, return sample selection, etc.) as well as identification of any potential toxic and biological hazards to humans, must be addressed. Over the past several years of instrument development, we have found that the adaptable, compact, and highly capable technique of laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) has significant potential to contribute substantially to these dual objectives. This concept thus addresses Challenge Area 1: instrumentation and Investigation Approaches.
    Keywords: Instrumentation and Photography
    Type: GSFC.CPR.6508.2012 , Concepts and Approaches to Mars Exploration Meeting; Jun 11, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CPR.6830.2012 , Instrumentation for Planetary Missions Workshop/NASA; Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...