ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phylogeny  (14)
  • American Association for the Advancement of Science (AAAS)  (14)
  • 2010-2014  (14)
  • 1980-1984
  • 1940-1944
  • 2012  (14)
Collection
Publisher
Years
  • 2010-2014  (14)
  • 1980-1984
  • 1940-1944
Year
  • 1
    Publication Date: 2012-02-22
    Description: The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, Dana C -- Chan, Cheong Xin -- Yoon, Hwan Su -- Yang, Eun Chan -- Qiu, Huan -- Weber, Andreas P M -- Schwacke, Rainer -- Gross, Jeferson -- Blouin, Nicolas A -- Lane, Chris -- Reyes-Prieto, Adrian -- Durnford, Dion G -- Neilson, Jonathan A D -- Lang, B Franz -- Burger, Gertraud -- Steiner, Jurgen M -- Loffelhardt, Wolfgang -- Meuser, Jonathan E -- Posewitz, Matthew C -- Ball, Steven -- Arias, Maria Cecilia -- Henrissat, Bernard -- Coutinho, Pedro M -- Rensing, Stefan A -- Symeonidi, Aikaterini -- Doddapaneni, Harshavardhan -- Green, Beverley R -- Rajah, Veeran D -- Boore, Jeffrey -- Bhattacharya, Debashish -- MSP-14226/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):843-7. doi: 10.1126/science.1213561.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344442" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Cyanobacteria/genetics ; Cyanophora/*genetics ; *Evolution, Molecular ; Gene Transfer, Horizontal ; Genes, Bacterial ; *Genome, Plant ; Molecular Sequence Data ; Photosynthesis/*genetics ; Phylogeny ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-10
    Description: Complex worker caste systems have contributed to the evolutionary success of advanced ant societies; however, little is known about the developmental processes underlying their origin and evolution. We combined hormonal manipulation, gene expression, and phylogenetic analyses with field observations to understand how novel worker subcastes evolve. We uncovered an ancestral developmental potential to produce a "supersoldier" subcaste that has been actualized at least two times independently in the hyperdiverse ant genus Pheidole. This potential has been retained and can be environmentally induced throughout the genus. Therefore, the retention and induction of this potential have facilitated the parallel evolution of supersoldiers through a process known as genetic accommodation. The recurrent induction of ancestral developmental potential may facilitate the adaptive and parallel evolution of phenotypes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajakumar, Rajendhran -- San Mauro, Diego -- Dijkstra, Michiel B -- Huang, Ming H -- Wheeler, Diana E -- Hiou-Tim, Francois -- Khila, Abderrahman -- Cournoyea, Michael -- Abouheif, Ehab -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):79-82. doi: 10.1126/science.1211451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal, Quebec, Canada, H3A 1B1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*genetics/growth & development/physiology ; *Biological Evolution ; Environment ; Female ; Genes, Insect ; Larva/growth & development ; Male ; Methoprene/pharmacology ; Molecular Sequence Data ; Phenotype ; Phylogeny ; Selection, Genetic ; Social Behavior ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-01
    Description: Previously described feathered dinosaurs reveal a fascinating record of feather evolution, although substantial phylogenetic gaps remain. Here we report the occurrence of feathers in ornithomimosaurs, a clade of non-maniraptoran theropods for which fossilized feathers were previously unknown. The Ornithomimus specimens, recovered from Upper Cretaceous deposits of Alberta, Canada, provide new insights into dinosaur plumage and the origin of the avian wing. Individuals from different growth stages reveal the presence of a filamentous feather covering throughout life and winglike structures on the forelimbs of adults. The appearance of winglike structures in older animals indicates that they may have evolved in association with reproductive behaviors. These specimens show that primordial wings originated earlier than previously thought, among non-maniraptoran theropods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zelenitsky, Darla K -- Therrien, Francois -- Erickson, Gregory M -- DeBuhr, Christopher L -- Kobayashi, Yoshitsugu -- Eberth, David A -- Hadfield, Frank -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):510-4. doi: 10.1126/science.1225376.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada. dkzeleni@ucalgary.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology/*classification ; Feathers/*anatomy & histology ; North America ; Phylogeny ; Wings, Animal/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-04-14
    Description: As genomic sequencing projects attempt ever more ambitious integration of genetic, molecular, and phenotypic information, a specialization of genomics has emerged, embodied in the subdiscipline of computational genomics. Models inherited from population genetics, phylogenetics, and human disease genetics merge with those from graph theory, statistics, signal processing, and computer science to provide a rich quantitative foundation for genomics that can only be realized with the aid of a computer. Unleashed on a rapidly increasing sample of the planet's 10(30) organisms, these analyses will have an impact on diverse fields of science while providing an extraordinary new window into the story of life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zerbino, D R -- Paten, B -- Haussler, D -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):179-82. doi: 10.1126/science.1216830.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomolecular Sciences and Engineering, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Computational Biology ; Evolution, Molecular ; *Genome ; *Genome, Human ; *Genomics ; Genotype ; Humans ; Phenotype ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-04
    Description: Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, Vaughn -- Morris, Robert M -- Frazar, Christian D -- Berthiaume, Chris T -- Morales, Rhonda L -- Armbrust, E Virginia -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):587-90. doi: 10.1126/science.1212665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22301318" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/*genetics/metabolism ; Biota ; *Ecosystem ; Enzymes/genetics/metabolism ; Euryarchaeota/classification/*genetics/metabolism/*physiology ; Genes, Archaeal ; *Genome, Archaeal ; Genome, Bacterial ; Heterotrophic Processes ; Lipid Metabolism/genetics ; Metabolic Networks and Pathways/genetics ; *Metagenome ; Microbial Consortia ; Molecular Sequence Data ; Pacific Ocean ; Peptide Hydrolases/genetics/metabolism ; Phylogeny ; Proteins/metabolism ; Rhodopsin/genetics ; Rhodopsins, Microbial ; Seawater/*microbiology ; Sequence Alignment ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-01
    Description: Placental development and genomic imprinting coevolved with parental conflict over resource distribution to mammalian offspring. The imprinted genes IGF2 and IGF2R code for the growth promoter insulin-like growth factor 2 (IGF2) and its inhibitor, mannose 6-phosphate (M6P)/IGF2 receptor (IGF2R), respectively. M6P/IGF2R of birds and fish do not recognize IGF2. In monotremes, which lack imprinting, IGF2 specifically bound M6P/IGF2R via a hydrophobic CD loop. We show that the DNA coding the CD loop in monotremes functions as an exon splice enhancer (ESE) and that structural evolution of binding site loops (AB, HI, FG) improved therian IGF2 affinity. We propose that ESE evolution led to the fortuitous acquisition of IGF2 binding by M6P/IGF2R that drew IGF2R into parental conflict; subsequent imprinting may then have accelerated affinity maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Christopher -- Hoppe, Hans-Jurgen -- Rezgui, Dellel -- Strickland, Madeleine -- Forbes, Briony E -- Grutzner, Frank -- Frago, Susana -- Ellis, Rosamund Z -- Wattana-Amorn, Pakorn -- Prince, Stuart N -- Zaccheo, Oliver J -- Nolan, Catherine M -- Mungall, Andrew J -- Jones, E Yvonne -- Crump, Matthew P -- Hassan, A Bassim -- 082352/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 9891/Cancer Research UK/United Kingdom -- A13295/Cancer Research UK/United Kingdom -- A9891/Cancer Research UK/United Kingdom -- C375/Cancer Research UK/United Kingdom -- C429/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1209-13. doi: 10.1126/science.1228633.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic and Biological Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197533" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Conserved Sequence ; Enhancer Elements, Genetic/*genetics ; *Evolution, Molecular ; *Exons ; Genomic Imprinting ; Humans ; Insulin-Like Growth Factor II/*chemistry/classification/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Receptor, IGF Type 2/*chemistry/classification/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-28
    Description: Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couradeau, Estelle -- Benzerara, Karim -- Gerard, Emmanuelle -- Moreira, David -- Bernard, Sylvain -- Brown, Gordon E Jr -- Lopez-Garcia, Purificacion -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):459-62. doi: 10.1126/science.1216171.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Mineralogie et de Physique de la Matiere Condensee, CNRS UMR 7590, Universite Pierre et Marie Curie, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539718" target="_blank"〉PubMed〈/a〉
    Keywords: Barium/analysis ; Base Sequence ; *Biofilms ; Calcification, Physiologic ; Calcium/analysis ; Calcium Carbonate/*analysis ; Carbonates/*analysis/metabolism ; Chemical Precipitation ; Cyanobacteria/classification/*isolation & purification/*physiology/ultrastructure ; Genes, Bacterial ; Genes, rRNA ; Inclusion Bodies/*chemistry/*ultrastructure ; Lakes/*microbiology ; Magnesium/analysis ; Mexico ; Molecular Sequence Data ; Phylogeny ; Strontium/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-08-04
    Description: Despite considerable current interest in biological invasions, the common life-history characteristics of successful invaders remain elusive. The widely held hypothesis that successful invaders have high reproductive rates has received little empirical support; however, alternative possibilities are seldom considered. Combining a global comparative analysis of avian introductions (〉2700 events) with demographic models and phylogenetic comparative methods, we show that although rapid population growth may be advantageous during invasions under certain circumstances, more generally successful invaders are characterized by life-history strategies in which they give priority to future rather than current reproduction. High future breeding expectations reduce the costs of reproductive failure under uncertain conditions and increase opportunities to explore the environment and respond to novel ecological pressures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sol, Daniel -- Maspons, Joan -- Vall-Llosera, Miquel -- Bartomeus, Ignasi -- Garcia-Pena, Gabriel E -- Pinol, Josep -- Freckleton, Robert P -- New York, N.Y. -- Science. 2012 Aug 3;337(6094):580-3. doi: 10.1126/science.1221523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ecological Research and Forestry Applications, 08193 Cerdanyola del Valles, Spain. d.sol@creaf.uab.cat〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/classification/*physiology ; *Introduced Species ; Phylogeny ; Population Growth ; *Reproduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-12
    Description: Generation of meiotic crossovers in many eukaryotes requires the elimination of anti-crossover activities by using the Msh4-Msh5 heterodimer to block helicases. Msh4 and Msh5 have been lost from the flies Drosophila and Glossina, but we identified a complex of minichromosome maintenance (MCM) proteins that functionally replace Msh4-Msh5. We found that REC, an ortholog of MCM8 that evolved under strong positive selection in flies, interacts with MEI-217 and MEI-218, which arose from a previously undescribed metazoan-specific MCM protein. Meiotic crossovers were reduced in Drosophila rec, mei-217, and mei-218 mutants; however, removal of the Bloom syndrome helicase (BLM) ortholog restored crossovers. Thus, MCMs were co-opted into a novel complex that replaced the meiotic pro-crossover function of Msh4-Msh5 in flies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599781/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599781/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohl, Kathryn P -- Jones, Corbin D -- Sekelsky, Jeff -- 5T32GM007092/GM/NIGMS NIH HHS/ -- GM061252/GM/NIGMS NIH HHS/ -- R01 GM061252/GM/NIGMS NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1363-5. doi: 10.1126/science.1228190.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23224558" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/classification/metabolism ; *Crossing Over, Genetic ; DNA Helicases/*antagonists & inhibitors/metabolism ; Drosophila/*genetics ; Drosophila Proteins/classification/*metabolism ; *Evolution, Molecular ; Meiosis ; Phylogeny ; Selection, Genetic ; Tsetse Flies/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-24
    Description: Studies of ecological networks (the web of interactions between species in a community) demonstrate an intricate link between a community's structure and its long-term viability. It remains unclear, however, how much a community's persistence depends on the identities of the species present, or how much the role played by each species varies as a function of the community in which it is found. We measured species' roles by studying how species are embedded within the overall network and the subsequent dynamic implications. Using data from 32 empirical food webs, we find that species' roles and dynamic importance are inherent species attributes and can be extrapolated across communities on the basis of taxonomic classification alone. Our results illustrate the variability of roles across species and communities and the relative importance of distinct species groups when attempting to conserve ecological communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Daniel B -- Sales-Pardo, Marta -- Sirer, M Irmak -- Bascompte, Jordi -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1489-92. doi: 10.1126/science.1216556.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana (EBD-CSIC), Sevilla, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Biota ; *Ecosystem ; *Food Chain ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...