ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (30)
  • Oxford University Press  (30)
  • 2010-2014  (30)
  • 2005-2009
  • 2000-2004
  • 1990-1994
  • 1980-1984
  • 1950-1954
  • 1935-1939
  • 2012  (30)
  • Biology  (29)
  • Computer Science  (5)
Collection
  • Articles  (30)
Years
  • 2010-2014  (30)
  • 2005-2009
  • 2000-2004
  • 1990-1994
  • 1980-1984
  • +
Year
Journal
Topic
  • 1
    Publication Date: 2012-12-20
    Description: The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/ ) provides information about interactions between environmental chemicals and gene products and their relationships to diseases. Chemical–gene, chemical–disease and gene–disease interactions manually curated from the literature are integrated to generate expanded networks and predict many novel associations between different data types. CTD now contains over 15 million toxicogenomic relationships. To navigate this sea of data, we added several new features, including DiseaseComps (which finds comparable diseases that share toxicogenomic profiles), statistical scoring for inferred gene–disease and pathway–chemical relationships, filtering options for several tools to refine user analysis and our new Gene Set Enricher (which provides biological annotations that are enriched for gene sets). To improve data visualization, we added a Cytoscape Web view to our ChemComps feature, included color-coded interactions and created a ‘slim list’ for our MEDIC disease vocabulary (allowing diseases to be grouped for meta-analysis, visualization and better data management). CTD continues to promote interoperability with external databases by providing content and cross-links to their sites. Together, this wealth of expanded chemical–gene–disease data, combined with novel ways to analyze and view content, continues to help users generate testable hypotheses about the molecular mechanisms of environmental diseases.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-21
    Description: Motivation: Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results: To align our large (〉80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of 〉50 in mapping speed, aligning to the human genome 550 million 2 x 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80–90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation: STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/ . Contact: dobin@cshl.edu .
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-15
    Description: Although biallelic mutations in non-collagen genes account for 〈10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10 , which encodes the 65 kDa prolyl cis–trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10 , PLOD2 and SERPINH1 , that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-28
    Description: A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-28
    Description: : High-throughput genome-wide studies of alternatively spliced mRNA transcripts have become increasingly important in clinical research. Consequently, easy-to-use software tools are required to process data from these studies, for example, using exon and junction arrays. Here, we introduce JETTA, an integrated software package for the calculation of gene expression indices as well as the identification and visualization of alternative splicing events. We demonstrate the software using data of human liver and muscle samples hybridized on an exon–junction array. Availability: JETTA and its demonstrations are freely available at http://igenomed.stanford.edu/~junhee/JETTA/index.html Contacts: wxiao1@partners.org
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-20
    Description: The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ ) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-24
    Description: Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell , 18 , 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res ., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-07
    Description: Genetic variation for plastic phenotypes potentially contributes phenotypic variation to populations that can be selected during adaptation to novel ecological contexts. However, the basis and extent of plastic variation that manifests in diverse environments remains elusive. Here, we characterize copper reaction norms for mRNA abundance among five Saccharomyces cerevisiae strains to 1) describe population variation across the full range of ecologically relevant copper concentrations, from starvation to toxicity, and 2) to test the hypothesis that plastic networks exhibit increased population variation for gene expression. We find that although the vast majority of the variation is small in magnitude (considerably 〈2-fold), not just some, but most genes demonstrate variable expression across environments, across genetic backgrounds, or both. Plastically expressed genes included both genes regulated directly by copper-binding transcription factors Mac1 and Ace1 and genes indirectly responding to the downstream metabolic consequences of the copper gradient, particularly genes involved in copper, iron, and sulfur homeostasis. Copper-regulated gene networks exhibited more similar behavior within the population in environments where those networks have a large impact on fitness. Nevertheless, expression variation in genes like Cup1 , important to surviving copper stress, was linked with variation in mitotic fitness and in the breadth of differential expression across the genome. By revealing a broader and deeper range of population variation, our results provide further evidence for the interconnectedness of genome-wide mRNA levels, their dependence on environmental context and genetic background, and the abundance of variation in gene expression that can contribute to future evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-30
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-28
    Description: The spatio-temporal variability of marine copepods, like other aquatic and terrestrial organisms, is controlled by both bottom-up (through changes in food resource) and top-down (through changes in predation) forcing. Canonically, climate-related changes in hydrography, nutrient chemistry and circulation can modulate phytoplankton production, thus imposing a bottom-up control on marine copepods, whereas human activities such as fishing may affect the predation mortality of copepods through food-web re-organization such as trophic cascading. Evaluating the sensitivity of copepod populations to bottom-up and top-down forcing is an essential step toward the prediction of future marine planktonic ecosystem changes. In this study, we used a coupled hydrodynamics/food-web/population-dynamics model to identify the key processes controlling the observed seasonality and distributional patterns of two copepod groups in the Gulf of Maine (GoM) region, including Pseudocalanus spp. and Centropages typicus. Numerical experiments were conducted to assess the sensitivity of the modeled species to changes in phytoplankton biomass and bloom timing, as well as the changes in mortality regime. The results show that both copepod groups are more sensitive to changes in mortality rates than to food availability and peak timing. Bottom-up processes alone cannot explain the observed variability in Pseudocalanus and Centropages population sizes, while top-down controls play a critical role in copepod population dynamics in the GoM region.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...