ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (43)
  • Oxford University Press  (34)
  • BioMed Central  (19)
  • Nature Publishing Group (NPG)  (8)
  • 2010-2014  (104)
  • 2014  (56)
  • 2012  (48)
  • 1
  • 2
    Publication Date: 2014-06-11
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2014-12-14
    Description: Background: Most PCR-based diagnostics are still considered time- and labor-intensive due to disparate purification, amplification, and detection steps. Advancements in PCR enzymes and buffer chemistry have increased inhibitor tolerance, facilitating PCR directly from crude samples. Obviating the need for DNA purification, while lacking a concentration step, these direct sample methods are particularly apt for human genetic testing. However, direct PCR protocols have traditionally employed thermal cyclers with slow ramp rates and conservative hold times that significantly increase an assay?s time-to-result. For this proof-of-principle study, our objective was to significantly reduce sample preparation and assay time for a PCR-based genetic test, for myotonic dystrophy type 1 (DM1), by pairing an inhibitor-resistant enzyme mix with a rapid thermal cycler to analyze samples directly in whole blood. Methods: DM1 genetic screening was done with an adapted conventional PCR approach that employed the Streck Philisa? Thermal Cycler, the inhibitor-resistant NEBNext? High-Fidelity 2X PCR Master Mix, and agarose gel electrophoresis or an Agilent 2100 Bioanalyzer for detection. The Gene Link? Myotonic Dystrophy Genemer? Kit was used as a reference assay kit to evaluate the rapid assay. Results: In this work, a rapid and direct PCR assay testing 10% whole blood as template has been developed as an exclusionary screening assay for DM1, a triple-repeat genetic disorder. PCR amplification was completed in 15 minutes using 30 cycles, including in situ hot-start/cell lysis. Out of the 40 donors screened, this assay identified 23 (57.5%) as DM1 negative suggesting no need for further testing. These data are 100% concordant with data collected using the commercially available Gene Link Genemer? Kit per the kit-specific PCR protocol. Conclusions: The PCR assay described in this study amplified DM1 short tandem repeats in 15 minutes. By eliminating sample purification and slower conventional PCR protocols, we demonstrated how adaptation of current PCR technology and chemistries can produce a simple-to-use exclusionary screening assay that is independent of up-front sample prep, improving a clinical lab technician?s time-to-result. We envision this direct and rapid methodology could be applied to other conventional PCR-based genetic tests and sample matrices where genomic DNA is targeted for analysis within a given molecular diagnostic platform.
    Electronic ISSN: 1471-2350
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-16
    Description: Background: The pig is a biomedical model to study human and livestock traits. Many of these traits are controlled by neuropeptides that result from the cleavage of prohormones by prohormone convertases. Only 45 prohormones have been confirmed in the pig. Sequence homology can be ineffective to annotate prohormone genes in sequenced species like the pig due to the multifactorial nature of the prohormone processing. The goal of this study is to undertake the first complete survey of prohormone and prohormone convertases genes in the pig genome. These genes were functionally annotated based on 35 gene expression microarray experiments. The cleavage sites of prohormone sequences into potentially active neuropeptides were predicted. Results: We identified 95 unique prohormone genes, 2 alternative calcitonin-related sequences, 8 prohormone convertases and 1 cleavage facilitator in the pig genome 10.2 assembly and trace archives. Of these, 11 pig prohormone genes have not been reported in the UniProt, UniGene or Gene databases. These genes are intermedin, cortistatin, insulin-like 5, orexigenic neuropeptide QRFP, prokineticin 2, prolactin-releasing peptide, parathyroid hormone 2, urocortin, urocortin 2, urocortin 3, and urotensin 2-related peptide. In addition, a novel neuropeptide S was identified in the pig genome correcting the previously reported pig sequence that is identical to the rabbit sequence. Most differentially expressed prohormone genes were under-expressed in pigs experiencing immune challenge relative to the un-challenged controls, in non-pregnant relative to pregnant sows, in old relative to young embryos, and in non-neural relative to neural tissues. The cleavage prediction based on human sequences had the best performance with a correct classification rate of cleaved and non-cleaved sites of 92% suggesting that the processing of prohormones in pigs is similar to humans. The cleavage prediction models did not find conclusive evidence supporting the production of the bioactive neuropeptides urocortin 2, urocortin 3, torsin family 2 member A, tachykinin 4, islet amyloid polypeptide, and calcitonin receptor-stimulating peptide 2 in the pig. Conclusions: The present genomic and functional characterization supports the use of the pig as an effective animal model to gain a deeper understanding of prohormones, prohormone convertases and neuropeptides in biomedical and agricultural research.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-25
    Description: The stability of RNAs bearing AU-rich elements in their 3'-UTRs, and thus the level of expression of their protein products, is regulated by interactions with cytoplasmic RNA-binding proteins. Binding by HuR generally leads to mRNA stabilization and increased protein production, whereas binding by AUF1 isoforms generally lead to rapid degradation of the mRNA and reduced protein production. The exact nature of the interplay between these and other RNA-binding proteins remains unclear, although recent studies have shown close interactions between them and even suggested competition between the two for binding to their cognate recognition sequences. Other recent reports have suggested that the sequences recognized by the two proteins are different. We therefore performed a detailed in vitro analysis of the binding site(s) for HuR and AUF1 present in androgen receptor mRNA to define their exact target sequences, and show that the same sequence is contacted by both proteins. Furthermore, we analysed a proposed HuR target within the 3'-UTR of MTA1 mRNA, and show that the contacted bases lie outside of the postulated motif and are a better match to a classical ARE than the postulated motif. The defining features of these HuR binding sites are their U-richness and single strandedness.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-06
    Description: Uptake of nitrogen (N) by sequential root regions in six tree species was measured in roots of 16- to 26-month-old seedlings at 50 and 1500 µM NH 4 NO 3 concentration, at the cell level using oscillating microelectrodes and at the root region level using enriched 15 N application. Our objective was to determine the root regions making the greatest contribution to total N uptake in each species as measured by the two contrasting techniques. White and condensed tannin zones were the regions with the smallest surface area in all species, but these zones often had the highest net flux of NH 4 + and NO 3 – . For most species, little variation was found among root regions in N flux calculated using a 15 N mass balance approach, but where significant differences existed, high N flux was observed in white, cork or woody zones. When N fluxes measured by each of the two methods were multiplied by the estimated surface area or biomass of each root region, the effect of root region size had the greatest influence on regional N uptake. Root regions of greatest overall N uptake were the cork and woody zones, on average. Total N uptake may thus be greatest in older regions of tree seedling roots, despite low rates of uptake per unit area.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-20
    Description: Background: Specialized interactions help structure communities, but persistence of specialized organisms is puzzling because a generalist can occupy more environments and partake in more beneficial interactions. The "Jack-of-all-trades is a master of none" hypothesis asserts that specialists persist because the fitness of a generalist utilizing a particular habitat is lower than that of a specialist adapted to that habitat. Yet, there are many reasons to expect that mutualists will generalize on partners.Plant-soil feedbacks help to structure plant and microbial communities, but how frequently are soil-based symbiotic mutualistic interactions sufficiently specialized to influence species distributions and community composition? To address this question, we quantified realized partner richness and phylogenetic breadth of four wild-grown native legumes (Lupinus bicolor, L. arboreus, Acmispon strigosus and A. heermannii) and performed inoculation trials to test the ability of two hosts (L. bicolor and A. strigosus) to nodulate (fundamental partner richness), benefit from (response specificity), and provide benefit to (effect specificity) 31 Bradyrhizobium genotypes. Results: In the wild, each Lupinus species hosted a broader genetic range of Bradyrhizobium than did either Acmispon species, suggesting that Acmispon species are more specialized. In the greenhouse, however, L. bicolor and A. strigosus did not differ in fundamental association specificity: all inoculated genotypes nodulated both hosts. Nevertheless, A. strigosus exhibited more specificity, i.e., greater variation in its response to, and effect on, Bradyrhizobium genotypes. Lupinus bicolor benefited from a broader range of genotypes but averaged less benefit from each. Both hosts obtained more fitness benefit from symbionts isolated from conspecific hosts; those symbionts in turn gained greater fitness benefit from hosts of the same species from which they were isolated. Conclusions: This study affirmed two important tenets of evolutionary theory. First, as predicted by the Jack-of-all-trades is a master of none hypothesis, specialist A. strigosus obtained greater benefit from its beneficial symbionts than did generalist L. bicolor. Second, as predicted by coevolutionary theory, each test species performed better with partner genotypes isolated from conspecifics. Finally, positive fitness feedback between the tested hosts and symbionts suggests that positive plant-soil feedback could contribute to their patchy distributions in this system.
    Electronic ISSN: 1472-6785
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-11
    Description: Background: The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Results: Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular alpha-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of alpha-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. Conclusions: These data demonstrate that hyperexpression of alpha-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular alpha-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...