ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (54,196)
  • 2010-2014  (101,027)
  • 2016  (54,196)
  • 2014  (52,619)
  • 2012  (48,408)
Collection
Language
Years
  • 2015-2019  (54,196)
  • 2010-2014  (101,027)
Year
  • 1
    Call number: PIK W 123-19-92034
    Type of Medium: Monograph available for loan
    Pages: X, 61 Seiten , Illustrationen
    ISBN: 9781780648903
    Series Statement: ICAC review articles on cotton production research 6
    Language: English
    Note: Contents: I: Introduction ; II: Climate Change Impacts on Major Cotton Production Regions ; III: Climate Change Impacts on Cotton Growth and Production ; IV: Management Approaches to Adapt to Impacts of Climate Change ; V: Role of Research in Modern Cotton Systems Adapting to Climate Change ; VI: Conclusion
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Dordrecht [u.a.] : Springer
    Call number: 2/M 13.0073
    Description / Table of Contents: Contents: Foreword 1. Spatial Science and Its Traditions 2. Literature Reviews 3. Research Questions 4. Data and Methods in Spatial Science 5. Graduate Degree Proposals 6. Grants and Grant Writing 7. Disseminating Research 8. Reflections on Proposal Writing in Spatial Science 9. Model Proposals 10. Thesis I: Human Systems 11. Thesis II: Human Systems-Mixed Methods 12. Dissertation I: Human-Environment Interactions 13. Dissertation II: Geo-Techniques 14. Dissertation III: Physical Systems 15. Extramural Grant I: Collaborative Research and Outreach 16. Extramural Grant II: Instrumentation 17. Extramural III: Doctoral Dissertation Research Improvement Grant 18. Intramural Grants Index
    Type of Medium: Monograph available for loan
    Pages: xviii, 215 S. : z.T. farb. Ill. , 24 cm
    Edition: 2nd ed.
    ISBN: 9789400722804
    Classification:
    E.7.
    Note: Erscheinungsjahr in Vorlageform:2012
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: S 98.0095(2016, 2)
    Type of Medium: Series available for loan
    Pages: 225 Seiten , Illustrationen, Diagramme
    Edition: Als Manuskript gedruckt
    ISBN: 9783941721654
    Series Statement: Tagungsbericht / DGMK 2016-2
    Parallel Title: Erscheint auch als Konversion von Biomassen und Kohlen
    Language: German , English
    Note: Beiträge überwiegend deutsch, teilweise englisch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Boca Raton : CRC Press, Taylor & Francis Group
    Call number: 15/M 17.91061
    Description / Table of Contents: As the shale revolution continues in North America, unconventional resource markets are emerging on every continent. In the next eight to ten years, more than 100,000 wells and one- to two-million hydraulic fracturing stages could be executed, resulting in close to one trillion dollars in industry spending. This growth has prompted professionals experienced in conventional oil and gas exploitation and development to acquire practical knowledge of the unconventional realm. Unconventional Oil and Gas Resources: Exploitation and Development provides a comprehensive understanding of the latest advances in the exploitation and development of unconventional resources. With an emphasis on shale, this book: Addresses all aspects of the exploitation and development process, from data mining and accounting to drilling, completion, stimulation, production, and environmental issues. Offers in-depth coverage of sub-surface measurements (geological, geophysical, petrophysical, geochemical, and geomechanical) and their interpretation. Discusses the use of microseismic, fiber optic, and tracer reservoir monitoring technologies and JewelSuite™ reservoir modeling software. Presents the viewpoints of internationally respected experts and researchers from leading exploration and production (E&P) companies and academic institutions
    Type of Medium: Monograph available for loan
    Pages: [894] Seiten in getrennter Zählung , Illustrationen, Diagramme, Karten
    ISBN: 9781498759403 (alk. paper)
    Series Statement: Emerging trends and technologies in petroleum engineering
    Classification:
    Deposits
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: IASS 17.91235
    Type of Medium: Monograph available for loan
    Pages: xix, 404 Seiten , 24 cm
    ISBN: 9781785360404 (hbk) , 9781785360411 (electronic)
    Series Statement: New horizons in environmental politics
    Parallel Title: ebook version
    Language: English
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: PIK D 025-16-89988
    Type of Medium: Monograph available for loan
    Pages: XXVIII, 186 Seiten , 21 cm
    ISBN: 9780262019125 (hardcover)
    Series Statement: Belfer center studies in international security
    Uniform Title: Interviews. Selections
    Language: English
    Note: The future of China -- The future of the United States -- The future of U.S.-China relations -- The future of India -- The future of Islamic extremism -- The future of national economic growth -- The future of geopolitics and globalization -- The future of democracy -- How Lee Kuan Yew thinks -- Conclusion..
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: 9/M 07.0421(409)
    In: Geological Society special publication
    Type of Medium: Monograph available for loan
    Pages: 277 S. , Ill., graph. Darst., Kt.
    ISBN: 9781862396883
    Series Statement: Geological Society special publication 409
    Classification:
    Sedimentology
    Note: Ernie Rutter has made, and continues to make, a significant impact in the field of rock deformation. He has studied brittle and plastic deformation processes that occur within both the oceanic and continental crust, as well as other key properties such as the permeability and seismic velocities of these rocks. His approach has been one that integrates field observations, laboratory experiments and theoretical analyses. This volume celebrates Ernie's key contribution to rock deformation and structural geology by bringing together a collection of papers that represent this broad approach. The papers within the volume address key issues that remain within these fields. These range from fundamental studies of brittle and plastic behaviour along with the resultant structures and microstructures from both the field and laboratory, to applied problems where a better understanding of the deformation and properties of the crust is still needed.
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Cham : Springer International Publishing
    Call number: 11/M 16.89937
    Description / Table of Contents: Constitutive Equation -- Micromechanics -- Variational Energy Formulation -- Anisotropy -- Governing Equation -- Analytical Solution -- Fundamental Solution and Integral Equation -- Poroelastodynamics -- Poroviscoelasticity -- Porothermoelasticity -- Porochemoelasticity -- Appendices -- Index
    Description / Table of Contents: This book treats the mechanics of porous materials infiltrated with a fluid (poromechanics), focussing on its linear theory (poroelasticity). Porous materials from inanimate bodies such as sand, soil and rock, living bodies such as plant tissue, animal flesh, or man-made materials can look very different due to their different origins, but as readers will see, the underlying physical principles governing their mechanical behaviors can be the same, making this work relevant not only to engineers but also to scientists across other scientific disciplines. Readers will find discussions of physical phenomena including soil consolidation, land subsidence, slope stability, borehole failure, hydraulic fracturing, water wave and seabed interaction, earthquake aftershock, fluid injection induced seismicity and heat induced pore pressure spalling as well as discussions of seismoelectric and seismoelectromagnetic effects. The work also explores the biomechanics of cartilage, bone and blood vessels. Chapters present theory using an intuitive, phenomenological approach at the bulk continuum level, and a thermodynamics-based variational energy approach at the micromechanical level. The physical mechanisms covered extend from the quasi-static theory of poroelasticity to poroelastodynamics, poroviscoelasticity, porothermoelasticity, and porochemoelasticity. Closed form analytical solutions are derived in details. This book provides an excellent introduction to linear poroelasticity and is especially relevant to those involved in civil engineering, petroleum and reservoir engineering, rock mechanics, hydrology, geophysics, and biomechanics
    Type of Medium: Monograph available for loan
    Pages: XXVI, 877 p. 171 illus., 62 illus. in color
    ISBN: 9783319252025 , 9783319252001
    Series Statement: Theory and Applications of Transport in Porous Media 27
    Parallel Title: Print version Poroelasticity
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: 9/M 07.0421(429)
    In: Geological Society special publication
    Description / Table of Contents: The rivers of East Asia are some of the largest and most important to human society and the global economy. They drain a variety of terrains from the Tibetan plateau, the hill country of southern China and the steep mountains of Taiwan. The sediment they carry potentially records the long-term evolution of continental environments within the marine stratigraphic record. Sediments reaching the ocean have to traverse the wide continental shelves where they may be reworked and transported by longshore currents, typhoon storm waves, as well as large ocean currents such as the Kuroshio. Deciphering any marine record requires us to understand the dynamics of sediment transport on the continental shelves, and this region acts as a global type example of such processes. Studies in this volume span a wide range of subdisciplines in the marine sciences and provide new insights into how sediment is distributed offshore after leaving the river mouths.
    Type of Medium: Monograph available for loan
    Pages: vi, 268 S.
    ISBN: 978-1-86239-740-8
    Series Statement: Geological Society special publication 429
    Classification:
    Sedimentology
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.12
    [Cham] : Springer
    Associated volumes
    Call number: 9783319252025 (e-book)
    In: Theory and applications of transport in porous media, Volume 27
    Description / Table of Contents: This book treats the mechanics of porous materials infiltrated with a fluid (poromechanics), focussing on its linear theory (poroelasticity). Porous materials from inanimate bodies such as sand, soil and rock, living bodies such as plant tissue, animal flesh, or man-made materials can look very different due to their different origins, but as readers will see, the underlying physical principles governing their mechanical behaviors can be the same, making this work relevant not only to engineers but also to scientists across other scientific disciplines. Readers will find discussions of physical phenomena including soil consolidation, land subsidence, slope stability, borehole failure, hydraulic fracturing, water wave and seabed interaction, earthquake aftershock, fluid injection induced seismicity and heat induced pore pressure spalling as well as discussions of seismoelectric and seismoelectromagnetic effects. The work also explores the biomechanics of cartilage, bone and blood vessels. Chapters present theory using an intuitive, phenomenological approach at the bulk continuum level, and a thermodynamics-based variational energy approach at the micromechanical level. The physical mechanisms covered extend from the quasi-static theory of poroelasticity to poroelastodynamics, poroviscoelasticity, porothermoelasticity, and porochemoelasticity. Closed form analytical solutions are derived in details. This book provides an excellent introduction to linear poroelasticity and is especially relevant to those involved in civil engineering, petroleum and reservoir engineering, rock mechanics, hydrology, geophysics, and biomechanics.
    Type of Medium: 12
    Pages: 1 Online-Ressource (893 Seiten) , Illustrationen, Diagramme
    ISBN: 9783319252025 (e-book) , 978-3-319-25202-5
    ISSN: 2213-6940 , 0924-6118
    Series Statement: Theory and applications of transport in porous media Volume 27
    Language: English
    Note: Contents 1 Introduction 1.1 Porous Material 1.2 Physical Mechanism 1.2.1 Drained and Undrained Responses 1.2.2 Time and Length Scale 1.2.3 Skempton Pore Pressure Effect 1.2.4 Effective Stress for Volumetric Deformation 1.2.5 Effective Stress for Pore Collapse 1.2.6 Fluid Storage 1.2.7 Thermoelasticity Analogy 1.2.8 Coupled Versus Uncoupled Diffusion 1.3 Poroelastic Phenomena 1.3.1 Borehole Failure 1.3.2 Mandel-Cryer Effect 1.3.3 Noordbergum Effect 1.3.4 Land Subsidence 1.3.5 Slope Stability and Fault Slippage 1.3.6 Fluid Induced Seismicity 1.3.7 Outburst of Coal 1.3.8 Hydraulic Fracturing 1.3.9 Water Wave and Seabed Interaction 1.3.10 Tidal and Barometric Efficiency 1.3.11 Biomechanics 1.3.12 Poroviscoelasticity and Anelastic Strain Recovery 1.3.13 Porothermoelasticity and Thermal Fracturing 1.3.14 Poroelastodynamics and Seismoelectric Effect 1.3.15 Swelling of Clay and Shale 1.3.16 Nanoporous Material References 2 Constitutive Equation 2.1 Physical Versus Phenomenological Approach 2.2 Stress and Strain of Porous Medium 2.2.1 Stress 2.2.2 Strain 2.3 Poroelastic Constitutive Equation 2.3.1 Isotropic Elastic Material 2.3.2 Isotropic Poroelastic Material 2.3.3 Reciprocal Work Theorem 2.3.4 Stress-Strain Relation 2.3.5 Strain-Stress Relation 2.4 Bulk Material Constant 2.4.1 Drained and Undrained Constant 2.4.2 Effective Stress Coefficient 2.4.3 Pore Pressure Coefficient 2.4.4 Storage Coefficient References 3 Micromechanics 3.1 Micromechanical Analysis 3.1.1 Solid and Pore Volumetric Strain 3.1.2 Fluid Volumetric Strain 3.1.3 Link Among Material Constants 3.2 Ideal Porous Medium 3.3 Effective Modulus 3.3.1 Mackenzie Model 3.3.2 Walsh Model 3.3.3 Budiansky and O’Connell Model 3.3.4 Bounds on Material Constants 3.4 Nonlinear Model 3.4.1 Effective Stress Dependent Pore Compressibility 3.4.2 Compaction Induced Permeability Change 3.5 Laboratory Test 3.5.1 Drained Test 3.5.2 Undrained Test 3.5.3 Unjacketed Test 3.6 Table of Poroelastic Constants References 4 Variational Energy Formulation 4.1 Internal and External Stress and Strain 4.1.1 Porosity 4.1.2 Volume and Surface Averaging of Elastic Material 4.1.3 Volume and Surface Averaging of Porous Material 4.1.4 Linkage Between Internal and External Strains 4.2 Thermodynamic Principles 4.3 Variational Formulation 4.3.1 Virtual Work 4.3.2 Internal Energy 4.3.3 Porosity Equilibrium 4.4 Constitutive Equation 4.4.1 Linear Material Model 4.4.2 Linear Model 4.5 Intrinsic Material Constant 4.5.1 Effective Solid Bulk Modulus 4.5.2 Fundamental Deformation Mode 4.5.3 Microisotropy and Microhomogeneity: Ideal Porous Medium 4.6 Link with Phenomenological Model 4.6.1 Link with Bulk Continuum Model 4.6.2 Link with Micromechanics Model 4.7 Deviation from Ideal Porous Medium 4.8 Limiting Material Properties 4.8.1 Ideal Porous Medium 4.8.2 Granular Material 4.8.3 Soil Mechanics Model: Saturated 4.8.4 Soil Mechanics Model: Nearly Saturated 4.8.5 Highly Compressible Solid 4.8.6 Highly Compressible Fluid 4.9 Material Stability and Energy Diagram 4.10 Semilinear Model 4.10.1 Geometric Nonlinearity 4.10.2 Structural Nonlinearity 4.11 Laboratory Measurement of Intrinsic Constant References 5 Anisotropy 5.1 Anisotropic Constitutive Equation 5.1.1 Elasticity 5.1.2 Poroelastic Stress-Strain Relation 5.1.3 Poroelastic Strain-Stress Relation 5.2 Material Symmetry 5.2.1 Orthotropy 5.2.2 Transverse Isotropy 5.2.3 Isotropy 5.3 Micromechanics 5.4 Ideal Porous Medium 5.5 Example References 6 Governing Equation 6.1 Darcy’s Law 6.1.1 Darcy’s Empirical Law 6.1.2 Homogenization Theory 6.1.3 Intrinsic Permeability and Mobility Coefficient 6.1.4 Irreversible Thermodynamics Process 6.2 Other Physical Laws 6.2.1 Mass Conservation 6.2.2 Force Equilibrium 6.3 Governing Equation 6.3.1 Navier-Cauchy Equation 6.3.2 Diffusion Equation 6.3.3 Compatibility Equation 6.3.4 Harmonic Relation 6.3.5 Orthotropy 6.3.6 Transverse Isotropy 6.4 Degenerated Governing Equation 6.4.1 Drained and Undrained State 6.4.2 Soil Mechanics Model 6.4.3 Irrotational Displacement Field 6.4.4 Uncoupling of Diffusion Equation 6.5 Boundary Value Problem 6.5.1 Existence and Uniqueness 6.5.2 Boundary Condition 6.6 Field Equation 6.6.1 Biot Function 6.6.2 Biot Decomposition 6.6.3 McNamee-Gibson Displacement Function References 7 Analytical Solution 7.1 Review of Early Work 7.2 Uniaxial Strain 7.2.1 Isotropy 7.2.2 Transverse Isotropy 7.3 One-Dimensional Consolidation Problem 7.3.1 Terzaghi’s Consolidation Problem 7.3.2 Loading by Fluid Pressure 7.3.3 Variable Rete Loading 7.3.4 Harmonic Excitation 7.4 Plane Strain 7.4.1 Orthotropy 7.4.2 Isotropy 7.4.3 Volumetric Strain and Rotation Formulation 7.5 Generalized Plane Strain 7.5.1 Definition of Generalized Plane Strain 7.5.2 Pure Shear 7.5.3 Warping 7.5.4 Torsion 7.5.5 Plane Strain 7.5.6 Axial Strain 7.5.7 Pure Bending 7.6 Pure Bending of Plate 7.6.1 Bending of Cantilever Plate 7.6.2 Buckling of Axially Loaded Plate 7.7 Mandel Problem 7.8 Water Wave Over Seabed 7.9 Spherical Symmetry 7.10 Cryer Problem 7.11 Spherical Cavity 7.11.1 Pressurized Cavity 7.11.2 Excavated Cavity 7.11.3 Pore Pressure Meter Problem 7.12 Axial Symmetry 7.13 Cylinder Problem 7.13.1 Solid Cylinder 7.13.2 Hollow Cylinder 7.14 Borehole Problem 7.14.1 Plane Strain Borehole Problem 7.14.2 Inclined Borehole Problem 7.15 Borehole and Cylinder Application Problems 7.15.1 Retrieval of Cylindrical Core 7.15.2 Excavated Borehole 7.15.3 Fluid Extraction and Injection 7.15.4 Borehole Breakdown Pressure 7.15.5 Borehole Stability Analysis 7.16 Moving Load on Half Plane 7.17 Plane Strain Half Space and Layered Problem 7.17.1 General Solution for Layered Problem 7.17.2 Plane Strain Half Space Problem 7.18 Axial Symmetry Half Space Problem References 8 Fundamental Solution and Integral Equation 8.1 Reciprocal Theorem 8.1.1 Green’s Second Identity 8.1.2 Betti-Maxwell Reciprocal Theorem 8.1.3 Reciprocal Theorem of Poroelasticity 8.2 Somigliana Integral Equation 8.2.1 Green’s Third Identity 8.2.2 Elasticity 8.2.3 Poroelasticity 8.3 Fredholm Integral Equation 8.3.1 Potential Problem 8.3.2 Elasticity 8.3.3 Poroelasticity 8.4 Stress Discontinuity Method 8.5 Displacement Discontinuity Method 8.6 Dislocation Method 8.7 Galerkin Integral Equation 8.8 Fundamental Solution 8.8.1 Elementary Fundamental Solution 8.8.2 Elasticity Fundamental Solution 8.9 Poroelasticity Fundamental Solution 8.10 Fluid Source 8.10.1 Continuous Source 8.10.2 Instantaneous Source 8.11 Fluid Dipole 8.11.1 Continuous Dipole 8.11.2 Instantaneous Dipole 8.12 Fluid Dilatation 8.12.1 Continuous Fluid Dilatation 8.12.2 Instantaneous Fluid Dilatation 8.13 Fluid Force 8.13.1 Continuous Fluid Force 8.13.2 Instantaneous Fluid Force 8.14 Fluid Dodecapole 8.15 Total Force 8.15.1 Continuous Total Force 8.15.2 Instantaneous Total Force 8.16 Solid Quadrupole and Hexapole 8.17 Solid Center of Dilatation 8.18 Displacement Discontinuity 8.19 Edge Dislocation 8.20 Fundamental Solution Relation Based on Reciprocity References 9 Poroelastodynamics 9.1 Dynamic Equilibrium Equation 9.2 Dynamic Permeability 9.3 Governing Equation 9.4 Wave Propagation 9.4.1 Elastic Wave 9.4.2 Poroelastic Wave 9.5 Phase Velocity and Attenuation 9.5.1 Phase Velocity 9.5.2 Attenuation 9.5.3 Extended Biot Models 9.6 One-Dimensional Wave Problem 9.6.1 Half Space 9.6.2 Finite Thickness Layer 9.7 Thermoelasticity Analogy 9.8 Poroelastodynamics Fundamental Solution 9.8.1 Elastodynamics Fundamental Solution 9.8.2 Helmholtz Decomposition 9.8.3 Three-Dimensional Point Force Solution 9.8.4 Three-Dimensional Fluid Source Solution 9.8.5 Two-Dimensional Fundamental Solution 9.9 Integral Equation Representation 9.10 Plane Wave Reflection and Refraction 9.10.1 Plane Strain Wave Solution 9.10.2 Reflection on Free Surface—Non-Dissipative Medium 9.10.3 Reflection on Free Surface—Dissipative Medium 9.10.4 Impermeable Surface 9.10.5 Fluid and Porous Medium Interface References 10 Poroviscoelasticity 10.1 Viscoelasticity 10.1.1 Spring and Dashpot Model 10.1.2 Correspondence Principle
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...