ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (1)
  • 2011  (1)
Collection
Years
  • 2010-2014  (1)
Year
  • 1
    Publication Date: 2019-07-12
    Description: NASA uses the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan's 0.61-m aperture Curtis-Schmidt telescope at the Cerro Tololo Inter-American Observatory in Chile, to help characterize the debris environment in geosynchronous orbit; this began in February 2001 and continues to the present day. Detected objects that are found to be on the U.S. Space Surveillance Network cataloged objects list are termed correlated targets (CTs), while those not found on the list are called uncorrelated targets (UCTs). This Johnson Space Center report provides details of observational and data-reduction processes for the entire MODEST dataset acquired in calendar years (CYs) 2007, 2008, and 2009. Specifically, this report describes the collection and analysis of 36 nights of data collected in CY 2007, 43 nights of data collected in CY 2008, and 43 nights of data collected in CY 2009. MODEST is equipped with a 2048 x 2048-pixel charged coupled device camera with a 1.3 by 1.3 deg field of view. This system is capable of detecting objects fainter than 18th magnitude (R filter) using a 5-s integration. This corresponds to a 20-cm diameter, 0.175-albedo object at 36,000 km altitude assuming a diffuse Lambertian phase function. The average number of detections each night over all 3 years was 26. The percentage of this number that represented the UCT population ranged from 34% to 18%, depending on the observing strategy and the field center location. Due to the short orbital arc over which observations are made, the eccentricity of the object s orbit is extremely difficult to measure accurately. Therefore, a circular orbit was assumed when calculating the orbital elements. A comparison of the measured inclination (INC), right ascension of ascending node (RAAN), and mean motion to the quantities for CTs from the U.S. Space Surveillance Network shows acceptable errors. This analysis lends credibility to the determination of the UCT orbital distributions. Figure 1 shows the size distribution of 3,143 objects detected in the data processed for CYs 2007, 2008, and 2009. The actual peak of the absolute magnitude distribution for the functional correlated targets is 10th magnitude, whereas the peak was 11th magnitude in 2002 2003 and 10th magnitude for 2004-2006. An absolute magnitude of 10.5 corresponds to objects with average diameters of 6.3 m, assuming an albedo of 0.175 and a diffuse Lambertian phase function. This result generally agrees with the known sizes of intact satellites. The absolute magnitude distribution for the UCTs is broad, but starts to roll off near 25 cm diameter or 17.5 magnitude. This roll off in the distribution reflects the detection capability of MODEST, not the true nature of the population. The true population is believed to continue at the same slope through fainter magnitudes based on comparisons with the LEO break-up law.
    Keywords: Space Transportation and Safety
    Type: NASA/TP-2011-217350 , JSC-CN-24875
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...