ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (2)
  • Modelling
  • Elsevier  (3)
  • Nature Publishing Group
  • 2010-2014  (3)
  • 1945-1949
  • 2011  (3)
Collection
Keywords
Years
  • 2010-2014  (3)
  • 1945-1949
Year
  • 1
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (d13CCH4 from 32.9‰ to 36.2‰), likely associated with oil, and enrichments of 13C in CO2 (d13CCO2 up to +28.3‰) and propane (d13CC3H8 up to 8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101–104 gmˉ2 dˉ1 in macro-seeps, and up to 446 g mˉ2 dˉ1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton aˉ1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the ‘‘Bernard ratio’’ C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 ‘‘emission factor’’ (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global ‘‘emission-factor’’ data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.
    Description: Published
    Description: 348-359
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Methane ; natural gas ; mud volcanoes ; seepage ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper introduces a mathematical model (FITOVERT) specifically developed to simulate the behaviour of vertical subsurface flow constructed wetlands (VSSF-CWs). One of the main goals of the development of FITOVERT was to keep the complexity of the model to an acceptable level, so as to provide a practical tool for design and operation optimization. The dynamic formulation of the model allows to simulate the typical non stationary feeding-emptying operation of VSSF-CWs. FITOVERT is able to describe the water flow through porous media in unsaturated conditions, combined with evapotranspiration; its biochemical module describes the degradation of both organic matter and nitrogen; the transport in the liquid phase is implemented for both dissolved and particulate components; the oxygen transport in the gaseous phase of the soil and its exchange with the liquid phase are also considered. As a main advantage, compared to the few currently available dedicated numerical models, FITOVERT is able to handle the porosity reduction due to bacteria growth and accumulation of particulate components, so that the clogging process is also simulated as an effect of the pore size reduction on the hydraulic conductivity of the simulated system. The performance of the model was firstly analyzed by comparison with hydrodynamic tests recorded in an experimental VSSF-CW pilot plant: tracer test were carried out in three different saturation conditions (fully saturated, partially saturated, and completely drained). FITOVERT proved to accurately simulate the hydraulic behaviour of VSSF-CWs in both saturated and unsaturated conditions. The needs for model improvements and further calibration are finally discussed.
    Description: Published
    Description: 633-640
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Constructed wetlands ; Hydrodynamics ; Modelling ; Reactive transport ; Vertical subsurface flow ; Unsaturated flow ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...