ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alleles  (2)
  • Expressed Sequence Tags  (2)
  • Nature Publishing Group (NPG)  (4)
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • Oxford University Press
  • 2010-2014  (4)
  • 1945-1949
  • 2012  (2)
  • 2011  (2)
Collection
Publisher
Years
  • 2010-2014  (4)
  • 1945-1949
Year
  • 1
    Publication Date: 2012-04-13
    Description: Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, alpha subunit), a result that is highly unlikely by chance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, Stephan J -- Murtha, Michael T -- Gupta, Abha R -- Murdoch, John D -- Raubeson, Melanie J -- Willsey, A Jeremy -- Ercan-Sencicek, A Gulhan -- DiLullo, Nicholas M -- Parikshak, Neelroop N -- Stein, Jason L -- Walker, Michael F -- Ober, Gordon T -- Teran, Nicole A -- Song, Youeun -- El-Fishawy, Paul -- Murtha, Ryan C -- Choi, Murim -- Overton, John D -- Bjornson, Robert D -- Carriero, Nicholas J -- Meyer, Kyle A -- Bilguvar, Kaya -- Mane, Shrikant M -- Sestan, Nenad -- Lifton, Richard P -- Gunel, Murat -- Roeder, Kathryn -- Geschwind, Daniel H -- Devlin, Bernie -- State, Matthew W -- K08 MH087639/MH/NIMH NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- T32 GM008042/GM/NIGMS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Apr 4;485(7397):237-41. doi: 10.1038/nature10945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program on Neurogenetics, Child Study Center, Department of Psychiatry, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495306" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Autistic Disorder/*genetics ; Codon, Nonsense/genetics ; Exome/*genetics ; Exons/*genetics ; Genetic Heterogeneity ; Genetic Predisposition to Disease/*genetics ; Humans ; Mutation/*genetics ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/*genetics ; RNA Splice Sites/genetics ; Siblings ; Sodium Channels/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-13
    Description: Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Sohrab P -- Roth, Andrew -- Goya, Rodrigo -- Oloumi, Arusha -- Ha, Gavin -- Zhao, Yongjun -- Turashvili, Gulisa -- Ding, Jiarui -- Tse, Kane -- Haffari, Gholamreza -- Bashashati, Ali -- Prentice, Leah M -- Khattra, Jaswinder -- Burleigh, Angela -- Yap, Damian -- Bernard, Virginie -- McPherson, Andrew -- Shumansky, Karey -- Crisan, Anamaria -- Giuliany, Ryan -- Heravi-Moussavi, Alireza -- Rosner, Jamie -- Lai, Daniel -- Birol, Inanc -- Varhol, Richard -- Tam, Angela -- Dhalla, Noreen -- Zeng, Thomas -- Ma, Kevin -- Chan, Simon K -- Griffith, Malachi -- Moradian, Annie -- Cheng, S-W Grace -- Morin, Gregg B -- Watson, Peter -- Gelmon, Karen -- Chia, Stephen -- Chin, Suet-Feung -- Curtis, Christina -- Rueda, Oscar M -- Pharoah, Paul D -- Damaraju, Sambasivarao -- Mackey, John -- Hoon, Kelly -- Harkins, Timothy -- Tadigotla, Vasisht -- Sigaroudinia, Mahvash -- Gascard, Philippe -- Tlsty, Thea -- Costello, Joseph F -- Meyer, Irmtraud M -- Eaves, Connie J -- Wasserman, Wyeth W -- Jones, Steven -- Huntsman, David -- Hirst, Martin -- Caldas, Carlos -- Marra, Marco A -- Aparicio, Samuel -- 5U01ES017154-02/ES/NIEHS NIH HHS/ -- R01 GM084875/GM/NIGMS NIH HHS/ -- R01GM084875/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Apr 4;486(7403):395-9. doi: 10.1038/nature10933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada. sshah@bccrc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495314" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Breast Neoplasms/diagnosis/*genetics/*pathology ; Clone Cells/metabolism/pathology ; DNA Copy Number Variations/genetics ; DNA Mutational Analysis ; Disease Progression ; *Evolution, Molecular ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/genetics ; Genotype ; High-Throughput Nucleotide Sequencing ; Humans ; INDEL Mutation/genetics ; Mutation/*genetics ; Point Mutation/genetics ; Precision Medicine ; Reproducibility of Results ; Sequence Analysis, RNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-06
    Description: Evolutionary relationships among the eight major lineages of Mollusca have remained unresolved despite their diversity and importance. Previous investigations of molluscan phylogeny, based primarily on nuclear ribosomal gene sequences or morphological data, have been unsuccessful at elucidating these relationships. Recently, phylogenomic studies using dozens to hundreds of genes have greatly improved our understanding of deep animal relationships. However, limited genomic resources spanning molluscan diversity has prevented use of a phylogenomic approach. Here we use transcriptome and genome data from all major lineages (except Monoplacophora) and recover a well-supported topology for Mollusca. Our results strongly support the Aculifera hypothesis placing Polyplacophora (chitons) in a clade with a monophyletic Aplacophora (worm-like molluscs). Additionally, within Conchifera, a sister-taxon relationship between Gastropoda and Bivalvia is supported. This grouping has received little consideration and contains most (〉95%) molluscan species. Thus we propose the node-based name Pleistomollusca. In light of these results, we examined the evolution of morphological characters and found support for advanced cephalization and shells as possibly having multiple origins within Mollusca.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kocot, Kevin M -- Cannon, Johanna T -- Todt, Christiane -- Citarella, Mathew R -- Kohn, Andrea B -- Meyer, Achim -- Santos, Scott R -- Schander, Christoffer -- Moroz, Leonid L -- Lieb, Bernhard -- Halanych, Kenneth M -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1R01NS06076/NS/NINDS NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 NS039103/NS/NINDS NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21DA030118/DA/NIDA NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):452-6. doi: 10.1038/nature10382.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. kmkocot@auburn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bivalvia/anatomy & histology/classification/genetics ; Expressed Sequence Tags ; Gastropoda/anatomy & histology/classification/genetics ; Gene Expression Profiling ; Genes ; Genome/*genetics ; Genomics ; Models, Biological ; Mollusca/anatomy & histology/*classification/*genetics ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-04
    Description: Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida. However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Struck, Torsten H -- Paul, Christiane -- Hill, Natascha -- Hartmann, Stefanie -- Hosel, Christoph -- Kube, Michael -- Lieb, Bernhard -- Meyer, Achim -- Tiedemann, Ralph -- Purschke, Gunter -- Bleidorn, Christoph -- England -- Nature. 2011 Mar 3;471(7336):95-8. doi: 10.1038/nature09864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Osnabruck, FB05 Biology/Chemistry, AG Zoology, Barbarastrasse 11, 49069 Osnabruck, Germany. struck@biologie.uni-osnabrueck.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Annelida/anatomy & histology/chemistry/*classification ; Expressed Sequence Tags ; Genome/genetics ; Genomics ; Models, Biological ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...