ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Flood sediment dispersal  (1)
  • Northern California shelf  (1)
  • Sediment trapping  (1)
  • American Geophysical Union  (2)
  • American Meteorological Society (AMS)
  • Paleontological Society
  • 2010-2014  (2)
  • 1990-1994
  • 2010  (2)
Collection
Keywords
Publisher
  • American Geophysical Union  (2)
  • American Meteorological Society (AMS)
  • Paleontological Society
Years
  • 2010-2014  (2)
  • 1990-1994
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09025, doi:10.1029/2004JC002727.
    Description: A large flood of the Eel River, northern California, created a thick sediment deposit between water depths of 50 and 70 m in January 1997. The freshwater plume, however, confined sediment delivery to water depths shallower than 30 m. Mechanisms proposed to explain the apparent cross-shelf transport include dispersal by oceanographic currents, resuspension by energetic waves, and gravitationally forced transport of a thin layer of fluidized mud. Field observations indicate that these processes were all active but cannot determine their relative significance or whether these mechanisms alone explain the location, size, and timing of deposition. Approximately 30% of the sediment delivered by the Eel River is accounted for in the midshelf mud bed and inner shelf, but the fate of the remaining 70% is uncertain. A three-dimensional, hydrodynamic model was used to examine potential mechanisms of sediment transport on the Eel River shelf. The model includes suspended sediment transport and was modified to account for a thin, near-bed layer of fluidized mud. It was used to simulate flood dispersal on the Eel River shelf, to compare the relative importance of transport within the near-bed fluid mud layer to suspended sediment transport, and to evaluate sediment budgets for floods. Settling properties of fine-grained sediment, both within the flood plume and the fluid mud layer, critically impact depositional patterns. To a lesser degree, wind-driven ocean currents influence the volume of sediment that escapes the shelf, and wave magnitude affects the cross-shelf location of flood deposits. Though dilute suspension accounts for a large fraction of total flux, cross-shelf transport by gravitational forcing appears necessary to produce a midshelf mud deposit similar in volume, location, and timing to those seen offshore of the Eel River.
    Description: The Office of Naval Research’s Coastal Geoscience Program supported this through program N0014-01-1-008.
    Keywords: Flood sediment dispersal ; Northern California shelf ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C10040, doi:10.1029/2010JC006248.
    Description: A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL 〈 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.
    Description: SNC is supported by a WHOI/USGS postdoctoral scholarship. The field program on the Skagit intertidal region is supported by an ONR grant N00014-08-1-0790.
    Keywords: Sediment trapping ; Tidal flat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...