ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line, Tumor  (2)
  • Mice  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • Elsevier
  • 2005-2009  (2)
  • 2009  (2)
Collection
Publisher
Years
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2009-03-03
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus. In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS. Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwiatkowski, T J Jr -- Bosco, D A -- Leclerc, A L -- Tamrazian, E -- Vanderburg, C R -- Russ, C -- Davis, A -- Gilchrist, J -- Kasarskis, E J -- Munsat, T -- Valdmanis, P -- Rouleau, G A -- Hosler, B A -- Cortelli, P -- de Jong, P J -- Yoshinaga, Y -- Haines, J L -- Pericak-Vance, M A -- Yan, J -- Ticozzi, N -- Siddique, T -- McKenna-Yasek, D -- Sapp, P C -- Horvitz, H R -- Landers, J E -- Brown, R H Jr -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1205-8. doi: 10.1126/science.1166066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA. tkwiatkowski@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251627" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Amino Acid Substitution ; Amyotrophic Lateral Sclerosis/*genetics/metabolism/pathology ; Animals ; Brain/pathology ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 16/*genetics ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Exons ; Female ; Humans ; Male ; Mice ; Motor Neurons/chemistry/metabolism/ultrastructure ; Mutant Proteins/chemistry/genetics/metabolism ; *Mutation, Missense ; Neurons/metabolism/ultrastructure ; RNA/metabolism ; RNA-Binding Protein FUS/chemistry/*genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Spinal Cord/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-04
    Description: Apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii (the causative agents of malaria and toxoplasmosis, respectively), are responsible for considerable morbidity and mortality worldwide. These pathogenic protozoa replicate within an intracellular vacuole inside of infected host cells, from which they must escape to initiate a new lytic cycle. By integrating cell biological, pharmacological, and genetic approaches, we provide evidence that both Plasmodium and Toxoplasma hijack host cell calpain proteases to facilitate parasite egress. Immunodepletion or inhibition of calpain-1 in hypotonically lysed and resealed erythrocytes prevented the escape of P. falciparum parasites, which was restored by adding purified calpain-1. Similarly, efficient egress of T. gondii from mammalian fibroblasts was blocked by either small interfering RNA-mediated suppression or genetic deletion of calpain activity and could be restored by genetic complementation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandramohanadas, Rajesh -- Davis, Paul H -- Beiting, Daniel P -- Harbut, Michael B -- Darling, Claire -- Velmourougane, Geetha -- Lee, Ming Yeh -- Greer, Peter A -- Roos, David S -- Greenbaum, Doron C -- F32 AI075846/AI/NIAID NIH HHS/ -- F32 AI075846-02/AI/NIAID NIH HHS/ -- F32 AI077268/AI/NIAID NIH HHS/ -- F32 AI077268-02/AI/NIAID NIH HHS/ -- R37 AI028724/AI/NIAID NIH HHS/ -- R37 AI028724-17/AI/NIAID NIH HHS/ -- T32 GM008076/GM/NIGMS NIH HHS/ -- T32 GM008076-24/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):794-7. doi: 10.1126/science.1171085. Epub 2009 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calpain/blood/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Erythrocytes/*parasitology ; Fibroblasts/parasitology ; Humans ; Leucine/analogs & derivatives/pharmacology ; Life Cycle Stages ; Merozoites/physiology ; Mice ; Mice, Knockout ; Plasmodium falciparum/growth & development/metabolism/*pathogenicity/physiology ; RNA, Small Interfering ; Schizonts/physiology ; Toxoplasma/growth & development/metabolism/*pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...