ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Mechanical Engineers  (2)
  • 2005-2009  (2)
  • 1985-1989
  • 1925-1929
  • 2008  (2)
  • 1
    Publication Date: 2008-01-07
    Description: Based on the experimental results of a 300kW solar chemical pilot plant for the production of zinc by carbothermal reduction of ZnO, we performed a conceptual design of a 5MW demonstration plant and of a 30MW commercial plant. Zinc can be used as a fuel for zinc-air batteries and fuel cells, or it can be reacted with water to form high-purity hydrogen. In either case, the chemical product is ZnO, which in turn is solar recycled to zinc. The proposed thermochemical process provides an energy efficient route for the conversion, storage, and transportation of solar energy in the form of solar fuels.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-07
    Description: Boron hydrolysis reaction can be used for onboard production of hydrogen. Boron is a promising candidate because of its low molecular weight and relatively high valence. The oxide product from this process can be reduced and the boron can be recovered using known technologies, e.g., chemically with magnesium or via electrolysis. In both routes solar energy can play a major role. In the case of magnesium, an intermediate product, magnesium oxide, is formed, and its reduction back to magnesium can exploit solar energy. The boron hydrolysis process at moderate reactor temperature up to 650°C, potentially suitable for use in vehicles, has not been sufficiently studied so far. This paper addresses the operational requirements using an experimental setup for investigating the hydrolysis reaction of metal powders exposed to steam containing atmosphere. The output hydrogen is measured as a function of temperature in reaction zone, steam partial pressure, and the different steam to metal ratio. Test results obtained during the hydrolysis of amorphous boron powder in batch experiments (with 0.1–2g of boron, water mass flow rate of 0.1–1g∕min, carrier gas flow rate of 100cm3∕min at total atmospheric pressure with steam partial pressure of 0.55–0.95bar abs) indicate that the reaction occurs in two different stages, depending on the temperature. A slow reaction starts at about 300°C and hydrogen output increases with reactor temperature and steam partial pressure. The fast stage starts as the reactor temperature approaches 500°C. At this temperature, the reaction develops vigorously due to higher reaction rate and its strong exothermic nature. The fast stage is self-restrained when 50–60% of the loaded boron is reacted and 1.5–1.8 SPT L H2 per 1g of boron is produced. Raising the temperature before the steam flow starts during the preheating period above 500°C increases the hydrogen yield at the fast stage. Then, the reaction continues for a long time at slow rate until the hydrogen release is terminated. The duration of the fast step decreases sharply with the increase of the steam to boron ratio.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...