ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Social Behavior  (1)
  • Adenosine Triphosphate/metabolism  (1)
  • 2005-2009  (2)
  • 1990-1994
  • 1980-1984
  • 1965-1969
  • 1930-1934
  • 2008  (2)
  • 1
    Publication Date: 2008-01-25
    Description: Bacterial flagella contain a specialized secretion apparatus that functions to deliver the protein subunits that form the filament and other structures to outside the membrane. This apparatus is related to the injectisome used by many gram-negative pathogens and symbionts to transfer effector proteins into host cells; in both systems this export mechanism is termed 'type III' secretion. The flagellar secretion apparatus comprises a membrane-embedded complex of about five proteins, and soluble factors, which include export-dedicated chaperones and an ATPase, FliI, that was thought to provide the energy for export. Here we show that flagellar secretion in Salmonella enterica requires the proton motive force (PMF) and does not require ATP hydrolysis by FliI. The export of several flagellar export substrates was prevented by treatment with the protonophore CCCP, with no accompanying decrease in cellular ATP levels. Weak swarming motility and rare flagella were observed in a mutant deleted for FliI and for the non-flagellar type-III secretion ATPases InvJ and SsaN. These findings show that the flagellar secretion apparatus functions as a proton-driven protein exporter and that ATP hydrolysis is not essential for type III secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paul, Koushik -- Erhardt, Marc -- Hirano, Takanori -- Blair, David F -- Hughes, Kelly T -- England -- Nature. 2008 Jan 24;451(7177):489-92. doi: 10.1038/nature06497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18216859" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antigens, Bacterial/genetics/metabolism ; Bacterial Proteins/genetics/metabolism/secretion ; Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology ; *Energy Metabolism/drug effects ; Flagella/chemistry/metabolism/*secretion ; Hydrogen-Ion Concentration ; Mutation/genetics ; Protein Transport/drug effects/genetics ; Proton-Motive Force/drug effects/*physiology ; Proton-Translocating ATPases/metabolism ; Salmonella enterica/enzymology/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-31
    Description: Close relatedness has long been considered crucial to the evolution of eusociality. However, it has recently been suggested that close relatedness may be a consequence, rather than a cause, of eusociality. We tested this idea with a comparative analysis of female mating frequencies in 267 species of eusocial bees, wasps, and ants. We found that mating with a single male, which maximizes relatedness, is ancestral for all eight independent eusocial lineages that we investigated. Mating with multiple males is always derived. Furthermore, we found that high polyandry (〉2 effective mates) occurs only in lineages whose workers have lost reproductive totipotency. These results provide the first evidence that monogamy was critical in the evolution of eusociality, strongly supporting the prediction of inclusive fitness theory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, William O H -- Oldroyd, Benjamin P -- Beekman, Madeleine -- Ratnieks, Francis L W -- New York, N.Y. -- Science. 2008 May 30;320(5880):1213-6. doi: 10.1126/science.1156108.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK. w.o.h.hughes@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511689" target="_blank"〉PubMed〈/a〉
    Keywords: Altruism ; Animals ; Ants ; Bees ; *Biological Evolution ; Female ; Male ; Phylogeny ; *Sexual Behavior, Animal ; *Social Behavior ; Sociobiology ; Wasps
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...