ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-09
    Description: Aeroallergy results from maladaptive immune responses to ubiquitous, otherwise innocuous environmental proteins. Although the proteins targeted by aeroallergic responses represent a tiny fraction of the airborne proteins humans are exposed to, allergenicity is a quite public phenomenon-the same proteins typically behave as aeroallergens across the human population. Why particular proteins tend to act as allergens in susceptible hosts is a fundamental mechanistic question that remains largely unanswered. The main house-dust-mite allergen, Der p 2, has structural homology with MD-2 (also known as LY96), the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Here we show that Der p 2 also has functional homology, facilitating signalling through direct interactions with the TLR4 complex, and reconstituting LPS-driven TLR4 signalling in the absence of MD-2. Mirroring this, airway sensitization and challenge with Der p 2 led to experimental allergic asthma in wild type and MD-2-deficient, but not TLR4-deficient, mice. Our results indicate that Der p 2 tends to be targeted by adaptive immune responses because of its auto-adjuvant properties. The fact that other members of the MD-2-like lipid-binding family are allergens, and that most defined major allergens are thought to be lipid-binding proteins, suggests that intrinsic adjuvant activity by such proteins and their accompanying lipid cargo may have some generality as a mechanism underlying the phenomenon of allergenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trompette, Aurelien -- Divanovic, Senad -- Visintin, Alberto -- Blanchard, Carine -- Hegde, Rashmi S -- Madan, Rajat -- Thorne, Peter S -- Wills-Karp, Marsha -- Gioannini, Theresa L -- Weiss, Jerry P -- Karp, Christopher L -- R01 AI075159/AI/NIAID NIH HHS/ -- R01 AI075159-01/AI/NIAID NIH HHS/ -- R01 EY014648/EY/NEI NIH HHS/ -- R01 HL067736/HL/NHLBI NIH HHS/ -- R01 HL067736-05/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Jan 29;457(7229):585-8. doi: 10.1038/nature07548. Epub 2008 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19060881" target="_blank"〉PubMed〈/a〉
    Keywords: Air ; Allergens/chemistry/genetics/*immunology/*metabolism ; Animals ; Antigens, Dermatophagoides/chemistry/genetics/*immunology/*metabolism ; Arthropod Proteins ; Asthma/genetics/immunology ; Cell Line ; Disease Models, Animal ; Female ; Humans ; Lipopolysaccharides/immunology ; Lymphocyte Antigen 96/chemistry/deficiency/genetics/immunology/metabolism ; Mice ; Molecular Mimicry/*immunology ; Protein Binding ; Toll-Like Receptor 4/deficiency/genetics/*immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...