ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023
  • 2005-2009  (2)
  • 2008  (2)
Collection
Years
  • 2020-2023
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2021-08-23
    Description: Understanding how environmental forcing has generated and maintained large-scale patterns of biodiversity is a key goal of evolutionary research and critical to predicting the impacts of global climate change. We suggest that the initiation of the global thermohaline circulation provided a mechanism for the radiation of Southern Ocean fauna into the deep sea. We test this hypothesis using a relaxed phylogenetic approach to coestimate phylogeny and divergence times for a lineage of octopuses with Antarctic and deep-sea representatives. We show that the deep-sea lineage had their evolutionary origins in Antarctica, and estimate that this lineage diverged around 33 million years ago (Ma) and subsequently radiated at 15 Ma. Both of these dates are critical in development of the thermohaline circulation and we suggest that this has acted as an evolutionary driver enabling the Southern Ocean to become a centre of origin for deep-sea fauna. This is the first unequivocal molecular evidence that deep-sea fauna from other ocean basins originated from Southern Ocean taxa and this is the first evidence to be dated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The Linnean Society of London | Oxford Acedemic
    In:  Biological Journal of the Linnean Society, 95 (1). pp. 205-218.
    Publication Date: 2021-07-23
    Description: A morphological dataset based on 14 standard counts and indices was constructed for 68 specimens comprising 12 species of octopuses. This was used to construct distance matrices based on morphological characters. These matrices were compared with genetic distance matrices compiled during molecular phylogenetic analyses of the same 12 species using four mitochondrial and two nuclear genes. Mantel tests showed that there was significant congruence between the phenetic and genetic matrices, suggesting that the genetic signal is reflected in the morphological data set. Matrices of geographical distance were constructed for the 12 species based on the latitude, longitude, and depth of capture of 1726 individuals. These matrices never showed significant congruence with genetic data or with morphological data. Multivariate analysis of the morphological dataset suggests that these counts and indices, traditionally used for discriminating between species in cephalopods, do not show great discrimination at species level, but provide excellent discrimination at the generic level, and, as such, might be useful for resolving the generic placement of some problematic taxa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...