ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (24)
  • Cambridge University Press  (4)
  • American Geophysical Union (AGU)
  • American Physical Society (APS)
  • 2005-2009  (28)
  • 1990-1994
  • 2007  (28)
  • 1
    Publication Date: 2007-10-19
    Description: During the MILAGRO campaign centered in the Mexico City area, Pacific Northwest National Laboratory (PNNL) and Argonne National Laboratory (ANL) operated atmospheric profiling systems at Veracruz and at two locations on the Central Mexican Plateau in the region around Mexico City. These systems included radiosondes, wind profilers, a sodar, and an aerosol backscatter lidar. An additional wind profiler was operated by the University of Alabama in Huntsville (UAH) at the Mexican Petroleum Institue (IMP) near the center of Mexico City. Because of the opportunity afforded by collocation of profilers, radiosondes, and a lidar, and because of the importance of boundary layer depth for aerosol properties, we have carried out a comparison of mixing layer depth as determined independently from these three types of measurement systems during the campaign. We have then used results of this comparison and additional measurements to develop a detailed description of the daily structure and evolution of the boundary layer on the Central Mexican Plateau during MILAGRO. Our analysis indicates that the profilers were more consistently successful in establishing the mixing layer depth during the daytime. The boundary layer growth was similar at the three locations, although the mixing layer tended to be slightly deeper in the afternoon in central Mexico City. The sodar showed that convection began about an hour after sunrise. Maximum daily mixing layer depths always reached 2000 m a.g.l. and frequently extended to 4000 m. The rate and variability of mixing layer growth was essentially the same as that observed during the IMADA-AVER campaign in the same season in 1997. This growth did not seem to be related to whether deep convection was reported on a given day. Wind speeds within the boundary layer exhibited a daily low-altitude maximum in the late afternoon with lighter winds aloft, consistent with previous reports of diurnal regional circulations. Norte events, which produced high winds at Veracruz, did not appreciably modulate the winds on the plateau. Finally, despite the typically dry conditions at the surface, radiosonde profiles showed that relative humidity often exceeded 50% in the early morning and in the upper part of the boundary layer. This suggests that aerosol particles would have experienced hygroscopic growth within the boundary layer on many days.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-09-07
    Description: The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosoundings and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis is used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns will enable the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-07-11
    Description: The formation of formaldehyde via hydrogen atom transfer from the methoxy radical to molecular oxygen is a key step in the atmospheric photochemical oxidation of methane, and in the propagation of deuterium from methane to molecular hydrogen. We report the results of the first investigation of the branching ratio for HCHO and HCDO formation in the CH2DO+O2 reaction. Labeled methoxy radicals (CH2DO) were generated in a photochemical reactor by photolysis of CH2DONO. HCHO and HCDO concentrations were measured using FTIR spectroscopy. Significant deuterium enrichment was seen in the formaldehyde product, from which we derive a branching ratio of 88.2±1.1% for HCDO and 11.8±1.1% for HCHO. The implications of this fractionation on the propagation of deuterium in the atmosphere are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-09
    Description: The Tropical Forest and Fire Emissions Experiment (TROFFEE) used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by UV absorbance, Fourier transform infrared spectroscopy (FTIR), and proton-transfer mass spectrometry (PTR-MS) to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC). The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF) were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC). Our EF for PM10 (17.8±4 g/kg) is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these fires created a massive "mega-plume" 〉500 km across that we sampled on 8 September. The mega-plume contained high PM10 and 10–50 ppbv of many reactive species such as O3, NH3, NO2, CH3OH, and organic acids. This is an intense and globally important chemical processing environment that is still poorly understood. The mega-plume or "white ocean" of smoke covered a large area in Brazil, Bolivia, and Paraguay for about one month. The smoke was transported 〉2000 km to the southeast while remaining concentrated enough to cause a 3–4-fold increase in aerosol loading in the São Paulo area for several days.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-07-27
    Description: Observations of CO2 were made in the upper troposphere and lower stratosphere in the deep tropics in order to determine the patterns of large-scale vertical transport and age of air in the Tropical Tropopause Layer (TTL). Flights aboard the NASA WB-57F aircraft over Central America and adjacent ocean areas took place in January and February, 2004 (Pre-AURA Validation Experiment, Pre-AVE) and 2006 (Costa Rice AVE, CR-AVE), and for the same flight dates of 2006, aboard the Proteus aircraft from the surface to 15 km over Darwin, Australia (Tropical Warm Pool International Cloud Experiment, TWP-ICE). The data demonstrate that the TTL is composed of two layers with distinctive features: (1) the lower TTL, 350–360 K (potential temperature(θ); approximately 12–14 km), is subject to inputs of convective outflows, as indicated by layers of variable CO2 concentrations, with air parcels of zero age distributed throughout the layer; (2) the upper TTL, from θ=~360 K to ~390 K (14–18 km), ascends slowly and ages uniformly, as shown by a linear decline in CO2 mixing ratio tightly correlated with altitude, associated with increasing age. This division is confirmed by ensemble trajectory analysis. The CO2 concentration at the level of 360 K was 380.0(±0.2) ppmv, indistinguishable from surface site values in the Intertropical Convergence Zone (ITCZ) for the flight dates. Values declined with altitude to 379.2(±0.2) ppmv at 390 K, implying that air in the upper TTL monotonically ages while ascending. In combination with the winter slope of the CO2 seasonal cycle (+10.8±0.4 ppmv/yr), the vertical gradient of –0.78 (±0.09) ppmv gives a mean age of 26(±3) days for the air at 390 K and a mean ascent rate of 1.5(±0.3) mm s−1. The TTL near 360 K in the Southern Hemisphere over Australia is very close in CO2 composition to the TTL in the Northern Hemisphere over Costa Rica, with strong contrasts emerging at lower altitudes (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-08
    Description: This paper presents a comparison of lidar ratios and volume extinction coefficients in tropical ice clouds, retrieved using observations from two instruments: the 532-nm Cloud Physics Lidar (CPL), and the in-situ Cloud Integrating Nephelometer (CIN) probe. Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements up to 17 km. Coincident observations from two cases of ice clouds located on top of deep convective systems are compared. First, lidar ratios are retrieved from CPL observations of attenuated backscatter, using a retrieval algorithm for opaque cloud similar to one used in the recently launched CALIPSO mission, and compared to results from the regular CPL algorithm. These lidar ratios are used to retrieve extinction coefficient profiles, which are compared to actual observations from the CIN in-situ probe, putting the emphasis on their vertical variability. When observations coincide, retrievals from both instruments are very similar, in the limits of colocation. Differences are generally variations around the average profiles, and general trends on larger spatial scales are well reproduced. The two instruments agree well, with an average difference of less than 11% on optical depth retrievals. Results suggest the CALIPSO Deep Convection algorithm can be trusted to deliver realistic estimates of the lidar ratio, leading to good retrievals of extinction coefficients.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-04-24
    Description: The role of the retention coefficient (i.e. the fraction of a dissolved trace gas which is retained in hydrometeors during freezing) for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems is investigated using a modified version of the Weather Research and Forecasting (WRF) model. Results from cloud system resolving model runs (in which deep convection is initiated by small random perturbations in association with so-called "large scale forcings (LSF)") for a tropical oceanic (TOGA COARE) and a mid-latitude continental case (ARM) are compared to two runs in which bubbles are used to initiate deep convection (STERAO, ARM). In the LSF runs, scavenging is found to almost entirely prevent a highly soluble tracer initially located in the lowest 1.5 km of the troposphere from reaching the upper troposphere, independent of the retention coefficient. The release of gases from freezing hydrometeors leads to mixing ratio increases in the upper troposphere comparable to those calculated for insoluble trace gases only in the two runs in which bubbles are used to initiate deep convection. A comparison of the two ARM runs indicates that using bubbles to initiate deep convection may result in an overestimate of the influence of the retention coefficient on the vertical transport of highly soluble tracers. It is, however, found that the retention coefficient plays an important role for the scavenging and redistribution of highly soluble trace gases with a (chemical) source in the free troposphere and also for trace gases for which even relatively inefficient transport may be important. The large difference between LSF and bubble runs is attributed to differences in dynamics and microphysics in the inflow regions of the storms. The dependence of the results on the model setup indicates the need for additional model studies with a more realistic initiation of deep convection, e.g., considering effects of orography in a nested model setup.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-09-24
    Description: The diffusive behaviour of swimming micro-organisms should be clarified in order to obtain a better continuum model for cell suspensions. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, in which the centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). Effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The three-dimensional movement of 64 or 27 identical squirmers in a fluid otherwise at rest, contained in a cube with periodic boundary conditions, is dynamically computed, for random initial positions and orientations. The computation utilizes a database of pairwise interactions that has been constructed by the boundary element method. In the case of (non-bottom-heavy) squirmers, both the translational and the orientational spreading of squirmers is correctly described as a diffusive process over a sufficiently long time scale, even though all the movements of the squirmers were deterministically calculated. Scaling of the results on the assumption that the squirmer trajectories are unbiased random walks is shown to capture some but not all of the main features of the results. In the case of (bottom-heavy) squirmers, the diffusive behaviour in squirmers' orientations can be described by a biased random walk model, but only when the effect of hydrodynamic interaction dominates that of the bottom-heaviness. The spreading of bottom-heavy squirmers in the horizontal directions show diffusive behaviour, and that in the vertical direction also does when the average upward velocity is subtracted. The rotational diffusivity in this case, at a volume fraction c = 0.1, is shown to be at least as large as that previously measured in very dilute populations of swimming algal cells (Chlamydomonas nivalis). © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-24
    Description: The rheological properties of a cell suspension may play an important role in the flow field generated by populations of swimming micro-organisms (e.g. in bioconvection). In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, in which the centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). Effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The three-dimensional movement of 64 identical squirmers in a simple shear flow field, contained in a cube with periodic boundary conditions, is dynamically computed, for random initial positions and orientations. The computation utilizes a database of pairwise interactions that has been constructed by the boundary element method. The restriction to pairwise additivity of forces is expected to be justified if the suspension is semi-dilute. The results for non-bottom-heavy squirmers show that the squirming does not have a direct influence on the apparent viscosity. However, it does change the probability density in configuration space, and thereby causes a slight decrease in the apparent viscosity at O(c2), where c is the volume fraction of spheres. In the case of bottom-heavy squirmers, on the other hand, the stresslet generated by the squirming motion directly contributes to the bulk stress at O(c), and the suspension shows strong non-Newtonian properties. When the background simple shear flow is directed vertically, the apparent viscosity of the semi-dilute suspension of bottom-heavy squirmers becomes smaller than that of inert spheres. When the shear flow is horizontal and varies with the vertical coordinate, on the other hand, the apparent viscosity becomes larger than that of inert spheres. In addition, significant normal stress differences appear for all relative orientations of gravity and the shear flow, in the case of bottom-heavy squirmers. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-05-10
    Description: A new homogenous earthquake catalogue covering Bulgaria and the surrounding Balkan area has been created with intention of performing a consistent seismic hazard assessment across the region. In keeping with modern requirements of cataloguing seismicity, this catalogue has been made homogenous as far as possible with regards to magnitude, which has been provided on any of four different reported scales for each event; mb, Ms, Mw and ML. A key historical catalogue for the region has been used to represent the early instrumental period of earthquake recording (1900 to 1963), whilst data have been obtained from the International Seismological Centre (ISC), National Earthquake Information Center (NEIC) and National Observatory of Athens (NOA) to cover the instrumental period of earthquake recording (1964 to 2004). ISC data have also been used to develop a new mb→Ms magnitude conversion equation for the catalogued region. Application of this new magnitude conversion relation, in combination with other selected magnitude scale correlations, ensures reported magnitudes can be systematically rendered onto homogenized Ms and Mw scales for all earthquakes. This catalogue contains 3681 events with homogenized magnitudes ≥4.0 Mw, for the time interval 1900 to 2004 (inclusive), located in the region bounded by 39°–45° N, 19°–29° E, at focal depths of 0.0 km to 401.0 km and in a magnitude range 4.0≤Mw≤7.2. Selected large magnitude (M≥6.0 Ms) earthquakes have had their reported magnitudes reassessed – and adjusted if necessary – in light of work by other authors. Applied statistical approaches aimed at determining the lower threshold to magnitude completeness suggest this catalogue is complete down to a homogenized surface-wave magnitude of 4.6 Ms.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...