ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (36)
  • Spacecraft Design, Testing and Performance  (36)
  • 2020-2022
  • 2005-2009  (72)
  • 2000-2004
  • 1940-1944
  • 2007  (72)
Collection
Years
  • 2020-2022
  • 2005-2009  (72)
  • 2000-2004
  • 1940-1944
Year
  • 1
    Publication Date: 2019-07-19
    Description: Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson, using ground-based analog systems demonstrate important changes in the genotypic, phenotypic, and virulence characteristics of this pathogen resulting from exposure to a flight-like environment (i.e. modeled microgravity).
    Keywords: Aerospace Medicine
    Type: NASA HRP Investigators'' Workshop; Feb 12, 2007 - Feb 14, 2007; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SPIE Optics and Photonics 2007; Aug 25, 2007 - Aug 31, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: As logistical access for in-flight space research becomes more limited, the use of ground based spaceflight analogs for life science studies will increase. These studies are particularly important as NASA progresses towards the Lunar and eventually Mars missions outlined in the 2005 Vision for Space Exploration. Countermeasures must be developed to mitigate the clinical risks associated with exploration class space missions. In an effort to coordinate studies across multiple disciplines, NASA has selected 90-day bed rest as the analog of choice, and initiated the Flight Analogs Project to implement research studies with or without the evaluation of countermeasures. Although bed rest is not the analog of choice to evaluate spaceflight-associated immune dysfunction, a standard Immune Assessment was developed for subjects participating in the 90-day bed best studies. The Immune Assessment consists of: leukocyte subset distribution, T cell functional responses, intracellular cytokine production profiles, latent viral reactivation, virus specific T cell levels, virus specific T cell function, stress hormone levels and a behavioral assessment using stress questionnaires. The purpose of the assessment during the initial studies (without countermeasure) is to establish control data against which future studies (with countermeasure) will be evaluated. It is believed that some of the countermeasures planned to be evaluated in future studies, such as exercise, pharmacologic intervention or nutritional supplementation, have the ability to impact immune function. Therefore immunity will likely be monitored during those studies. The data generated during the first three control studies showed that the subjects in general did not display altered peripheral leukocyte subsets, constitutive immune activation, significant latent viral reactivation (EBV, VZV) or altered T cell function. Interestingly, for some subjects the level of constitutively activated T cells (CD8+/CD69+) and virus-specific T cells (CMV and EBV) both decreased during the studies. This likely reflects the isolation of the subjects (from an immunological perspective) and absence of everyday subclinical challenges to the immune system. Cortisol levels (plasma and saliva) did not vary significantly during the studies. This probably reflects a lack of physiological stress during the study and the stress of readaptation to the 1xG environment at R+1. These data demonstrate the absence of significant immune alteration during 90-day bed rest, and establish control data against which future studies (including countermeasures) may be compared.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: Thermoregulation in the space environment is critical for survival, especially in off- nominal operations. In such cases, mathematical models of thermoregulation are frequently employed to evaluate safety-of-flight issues in various human mission scenarious. In this study, the 225-node Wissler model and the 41-Node Metabolic Man model are employed to evaluate the effects of such a scenario. Metabolic loads on astronauts wearing the advanced crew escape suit (ACES) and liquid cooled ventilation garment (LCVG) are imposed on astronauts exposed to elevated cabin temperatures resulting from a systems failure. The study indicates that the performance of the ACES/LCVG cooling system is marginal. Increases in workload and or cabin temperature above nominal will increase rectal temperature, stored heat load, heart rate, and sweating, which could lead to deficits in the performance of cognitive and motor tasks. This is of concern as the ACES/LCVG is employed during Shuttle decent when the likelihood of a safe landing may be compromised. The study indicates that the most effective mitigation strategy would be to decrease the LCVG inlet temperature.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Post flight inspections on the Space Shuttle Atlantis conducted after the STS-115 mission revealed a 0.11 inch (2.8 mm) hole in the outer facesheet of the starboard payload bay door radiator panel #4. This hole is the possible result of micrometeoroid/orbiting debris (MMOD) impact. The payload bay door radiators in this region are 0.5 inch (12.7 mm) thick aluminum honeycomb with 0.011 in (0.279 mm) thick aluminum facesheets topped with 0.005 in (0.127 mm) silver-Teflon tape. Inner facesheet damage included a 0.267 in (6.78 mm) long through crack with measurable deformation in the area of 0.2 in (5.1 mm). There was also a 0.031 in (0.787 mm) diameter hole in the rear facesheet. A large approximately 1 in (25 mm) diameter region of honeycomb was also destroyed. Since the radiators are located on the inside of the shuttle payload bay doors which are closed during ascent and reentry, the damage could only have occurred during the on-orbit portion of the mission. This paper will document the data collected from the impact site and will include results of the SEM/EDX analysis. Evidence will be presented that suggests a source of the impact as well as an analysis of the impact site features that indicate projectile directionality. Results of hypervelocity impact testing on representative samples in an attempt to simulate the impact event will be presented and discussed. Finally, the results of a study showing the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile will be given.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Hypervelocity Impact Symposium; Sep 23, 2007 - Sep 27, 2007; Williamsburg, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The foam thermal protection system (TPS) of the space shuttle External Tank (ET) has provided some unique challenges to the nondestructive testing community. Three nondestructive evaluation methods have been developed to identify defects in the foam TPS of the ET. Terahertz imaging and backscatter radiography have been developed to identify voids in thick foam regions while shearography has been developed to identify shallow delaminations, shallow voids and crush damage in the foam. The basic theory of operation along with factors, determined from a series of designed experiments, affecting the results of these methods will be described. Results from both test panels and flight tank inspections will be provided, along with predicted probability of detection estimates to show the range in defect sizes and types that can be readily detected.
    Keywords: Spacecraft Design, Testing and Performance
    Type: American Society for Nondestructive Testing 16th Annual Research Symposium; Mar 27, 2007 - Mar 29, 2007; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Virtual environments (VE) offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Sensorimotor aftereffects of VEs are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. The purpose of this research was to compare disturbances in sensorimotor coordination produced by dome virtual environment display and to examine the effects of exposure duration, and repeated exposures to VR systems. The current study examined disturbances in eye-head-hand (EHH) and eye-head coordination. Preliminary results will be presented. Eleven subjects have participated in the study to date. One training session was completed in order to achieve stable performance on the EHH coordination and VE tasks. Three experimental sessions were performed each separated by one day. Subjects performed a navigation and pick and place task in a dome immersive display VE for 30 or 60 min. The subjects were asked to move objects from one set of 15 pedestals to the other set across a virtual square room through a random pathway as quickly and accurately as possible. EHH coordination was measured before, immediately after, and at 1 hr, 2 hr, 4 hr and 6 hr following exposure to VR. EHH coordination was measured as position errors and reaction time in a pointing task that included multiple horizontal and vertical LED targets. Repeated measures ANOVAs were used to analyze the data. In general, we observed significant increases in position errors for both horizontal and vertical targets. The largest decrements were observed immediately following exposure to VR and showed a fairly rapid recovery across test sessions, but not across days. Subjects generally showed faster RTs across days. Individuals recovered from the detrimental effects of exposure to the VE on position errors within 1-2 hours. The fact that subjects did not significantly improve across days suggests that in order to achieve dual adaptation of EHH coordination may require more than three training sessions. These findings provide some direction for developing training schedules for VE users that facilitate adaptation, support the idea that preflight training of astronauts may serve as useful countermeasure for the sensorimotor effects of space flight, and support the idea that VEs may serve as an analog for sensorimotor effects of spaceflight.
    Keywords: Aerospace Medicine
    Type: 28th Annual International Gravitational Physiology Conference; Apr 08, 2006 - Apr 13, 2006; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, conducted the Ares I Crew Launch Vehicle System Requirements Review (SRR) at the end of 2006, a mere year after the project team was assembled. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the operability, reliability, and affordability goals outlined by the Constellation Program. As directed in NASA Procedure and Regulation (NPR) 7123, NASA Systems Engineering Procedural Requirements, the Ares I SRR examined "the functional and performance requirements defined for the system and the preliminary program or project plan and ensures that the requirements and the selected concept will satisfy the mission." The SRR was conducted to ensure the system- and element-level design and interface requirements are defined prior to proceeding into the project's design phase. The Exploration Launch Projects Control Board convened on December 19,2006, and accepted the findings of the SRR and the go-forward plan proceeding to PDR. Based upon these findings, the Ares project believes that operability must drive the vehicle's design, and that a number of design challenges, including system mass and reliability, must be addressed as part of the progress to PDR.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Space 2007; Sep 18, 2007 - Sep 20, 2007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...