ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (63)
  • 2005-2009  (63)
  • 1980-1984
  • 1965-1969
  • 2008  (39)
  • 2007  (24)
  • 1
    Publication Date: 2012-02-03
    Description: The 2006 eruption of Mt. Etna (Italy): new multidisciplinary approach implemented by the UFSO staff of INGV Catania Section S. Mangiagli, M. Neri, E. Pecora, D. Reitano, A. Amantia, E. Biale, M. D’Agostino, M. La Via and O. Torrisi Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, P. Roma, 2 - 95125, Catania Italy (mangiagli@ct.ingv.it, reitano@ct.ingv.it) During the latest (2006) eruptive activity of Mount Etna (Sicily - Italy) multidisciplinary instrumental networks and observations produced useful and significant data in order to understand the eruptive dynamics of this volcano. In this context, the staff of the INGV Catania Section Department called Unità Funzionale Sala Operativa (UFSO) actively participates in national and European research projects dealing with the development and use of new systems with high technological content useful, in particular, during eruptions or seismic crises. Another aspect of this work is represented by the development of software for the supervisory and automatic control of the working systems. For example during the last few weeks of 2006, ash-rich columns several km in height, and consequent fallout characterized the eruption of Mt Etna and severely hampered the functioning of the nearby International Airport of Catania. Therefore, for a better evaluation of real time systems a new dedicated web site has been realized, improving the availability of fundamental data for the Italian Department of Civil Defence (DPC). The DPC staff, using also INGV scientific data, releases daily bulletins to Italian government authorities. Multidisciplinary data are collected and well represented in risk maps. Moreover, various algorithms have been implemented and used to make simulations of eruptive clouds from Mt. Etna. All realized maps also use wind forecasts at different altitude and different scenarios are available in a new software able to plot different parameters like, for example, temperature and wind speed/direction in different isobaric levels, precipitation rate and total cloud cover.
    Description: INGV, Sezione Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 5.5. Attività di Sala Operativa
    Description: open
    Keywords: Mmultidisciplinary approach ; Etna 2006 ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-23
    Description: L’Unità Funzionale Vulcanologia e Geochimica della Sezione di Catania dell’INGV sta sviluppando una nuova tecnologia che permette il monitoraggio in continuo del Radon, un gas che cambia la sua concentrazione in dipendenza del flusso di gas dal suolo. Visto che il tasso di emissione di radon dal suolo è dipendente dalla dinamica sia del magma che delle faglie, si tratta di un parametro che ha una forte potenzialità per la sorveglianza dei vulcani. Per tale motivo l’INGV, nell’ambito della Convenzione 2004-2005 con il Dipartimento della Protezione Civile, ha finanziato un progetto mirato proprio allo sviluppo tecnologico e scientifico di questo tipo di ricerca (progetto V3_6/28 – Etna, coordinatori S. Gresta e P. Papale, resp. M. Neri), la cui prima fase è iniziata il 1° giugno 2005. Questa iniziale fase di lavoro si è concretizzata con l’installazione di una prima sonda tipo “barasol” per la misura continua dell’attività di radon nel suolo presso Torre del Filosofo. Una seconda sonda, acquistata con fondi della Sezione Roma 1 dell’INGV (resp. F. Quattrocchi), è stata installata nei pressi del piano di faglia della Pernicana (quota ~1500 m s.l.m.). Una terza sonda, acquistata con fondi della Sezione Catania dell’INGV, è stata installata nei pressi di Dagala. La presente nota descrive quest’ultima installazione.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: open
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Format: 412816 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-11
    Description: We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green’s functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano
    Description: Published
    Description: L04301
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1736327 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: The recent eruptive activity of Mount Etna (Italy) monitored by a network of visible and thermal video cameras E. Biale, S. Mangiagli, M. Neri, E. Pecora, D. Reitano and B. Behncke Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, P. Roma, 2 - 95125, Catania Italy (pecora@ct.ingv.it, neri@ct.ingv.it) The recent eruptive activity of Mount Etna in Sicily (Italy) has been well documented by multidisciplinary instrumental observations, and significantly improved the understanding of the eruptive dynamics of this volcano. The monitoring networks are currently developed and managed by the Catania Section of the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Video footage from the network of the monitoring video cameras is analyzed to discriminate between different eruptive typologies and to derive physical and dynamic properties of the eruptions. The cameras are located in four different places around the volcano (Schiena dell’Asino, Milo, Nicolosi and Catania), at respective distances of 5, 11, 15 and 27 km from the summit craters. Four video cameras record in the visible band and one in the Long-wave infrared (LWIR) over 24 hours/day. The images acquired by the Schiena dell’Asino camera are sent to a receiver in Catania, through a 10 GHz microwawe transmitter, whereas the signals from the other cameras are sent to Catania via 2 GHz video transmitters and/or cable. All images are digitized on computer, and archived on video tape and in AVI format with each clip representing 15 minutes compressed using 1 frame per two seconds, which are posted on the intranet server of the institute. A GPS Time-Code ads date and time to each frame before being digitized to 640 x 480 pixels. Meaningful frames are selected for analysis from footage of significant eruptive events, through dedicated software. The cumulative error regarding the measured parameters is estimated at up to 20%. In 2006, a new FLIR Thermavision A40M infrared camera was installed at Nicolosi. The camera detector is a 320 by 240 pixel uncooled microbolometer with a spectral range from 7.5 to 13 micrometer. Vertical and horizontal viewing is 18° and 24 , respectively, with a spatial resolution of 1.3 mrad. Thermal sensitivity is 0.08°C at 30°C. Thermal images are converted on board the camera into a single value for the peak temperature found in a region of interest centred on the active craters. This value is transmitted with a frequency of 1 Hz to the acquisition centre in Nicolosi. If a peak temperature value is less than 2°C than the preceding value then the relative change is added to the cumulative temperature value. Consequently, when the curve is near vertical the images registered by the thermal camera suggest increases in explosive/ effusive activity. On the contrary, if the curve is near horizontal the radiance of the eruptive theatre is constant or in diminution. Thermal images and thermal data are processed by dedicated software developed by LabVIEW 8.0 in detecting ash-rich eruptive columns, explosive and effusive activity. All these data are available at the INGV Control Centre and are used to alert on-duty staff in the early-warning procedures. This network of cameras furnished fundamental data to the Italian Civil Defence during the 2006 eruption, when ash-rich columns several km in height severely threatened the functioning of the nearby International Airport of Catania.
    Description: INGV, Sezione Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Nnetwork of visible and thermal video cameras ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Discrete and continuous microgravity observations have been routinely performed at Mt. Etna since 1986 and 1998, respectively. Besides furnishing a full view of how gravity measurements from Etna are accomplished and reduced, this paper is a collection of case studies aimed at demonstrating the potential of microgravity studies to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. As for discrete measurements, case studies relative to the 1994-96 and 2001 periods are reported. During the first period, the observed gravity changes are interpreted within the framework of the strombolian activity which occurred from the summit craters. Gravity changes observed during the first 9 months of 2001 are directly related to the underground mass redistributions who preceded, accompanied and followed the July-August 2001 flank eruption of Etna. As for continuous measurements, a three-year (1998-2000) sequence and a 48-hour (26-28 October 2002) sequence, both from PDN station, are presented and discussed. The first one is maybe the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. It allows to discover the cyclic character of a source whose geometrical characteristics are retrieved through data from discrete measurements. The second sequence is also likely to represent an unique item: a gravity sequence encompassing the onset of an eruption and coming from a station only 1.5 km from the eruptive fissures. It allows some constraints to be set on the characteristics of the intrusive mechanism leading to the eruption.
    Description: Submitted
    Description: open
    Keywords: Mt Etna ; microgravity ; magma sources ; modeling ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Format: 67973 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Microgravity and GPS data collected at Mt Etna during a 1-yr time interval encompassing the 2002 NE-rift eruption are analysed. The common GPS-gravity profile traverses the summit area of Mt Etna, between the summit craters (about 3000 m) and the northernmost tip of the eruptive fractures (2500 m). Displacements (up to 2 m in both the horizontal and vertical directions) and gravity variations (up to 350 μGal, after having removed the effect of elevation changes) observed during this period are among the largest ever recorded at Etna. Displacements and gravity changes have been modelled separately, assuming a magma influx from the summit feeder pipe to the NE-rift. Models obtained through surface deformation data partially overlap with those explaining the gravity data but in general are narrower and extend to a greater depth. The discrepancies found between gravity and deformation models are significant and can be regarded as due to the different structural features encountered by the intruding magma during its downslope propagation along the NE-rift. In particular, on the grounds of our result, we infer that both the eastward sliding of the east flank of the volcano and the curved shape of the NE-rift influenced the 2002 intrusive process.
    Description: Published
    Description: 339-347
    Description: reserved
    Keywords: deformation ; density ; dislocation ; gravity anomalies ; magma flow ; rifts ; volcanic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 545767 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: INGV Osservatorio Vesuviano
    Description: Published
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: seismic survey ; Colima volcano ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Measuring Hg/SO2 ratios in volcanic emissions is essential for better apportioning the volcanic contribution to the global Hg atmospheric cycle. Here, we report the first real-time simultaneous measurement Hg and SO2 in a volcanic plume, based on Lumex and MultiGAS techniques, respectively. We demonstrate that the use of these novel techniques allows the measurements of Hg/SO2 ratios with a far better time resolution than possible with more conventional methods. The Hg/SO2 ratios in the plume of F0 fumarole on La Fossa Crater, Vulcano Island spanned an order of magnitude over a 30 minute monitoring period, but was on average in qualitative agreement with the Hg/SO2 ratio directly measured in the fumarole (mean plume and fumarole ratios being 1.09 x 10-6 and 2.9 x 10-6, respectively). The factor 2 difference between plume and fumarole compositions provides evidence for fast Hg chemical processing the plume.
    Description: Published
    Description: L21307
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Mercury ; Fumarolic condensates ; Volcanic emissions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...