ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Venus Entry Probe Workshop; Jan 19, 2006 - Jan 20, 2006; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ICEUM8: International Conference on Exploration and Utilizationo of the Moon; Jul 23, 2006 - Jul 27, 2006; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: This viewgraph presentation reviews the lessons learned from heritage adoption designs. A general overview of cover deployment hardware that includes the three mechanisms of latch, hinge, and energy absorbers are also discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (〉 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and 〈 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (〈 25 pm) and largest (〉 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2006-049 , ESA/IEEE International Conference; Jun 06, 2006 - Jun 09, 2006; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Geophysical Union, Fall Meeting; Dec 11, 2006 - Dec 15, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/CP-2006-214202 , 1st NASA Space Exploration Logistics Workshop; Jan 17, 2006 - Jan 18, 2006; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AC-06-A5.2.06 , 57th International Astrnautical Congress; Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper describes a conceptual flagship-class Europa orbiter concept that was assumed to launch as early as 2012, arriving at Europa approximately 8 years later using inner solar system gravity assists to reach Jupiter. Jupiter's intense radiation environment limits the mission duration at Europa to 30 days for this study, though the duration is a result of multiple trades and is by no means fixed. The Europa Subgroup of the Outer Planets Assessment Group identified six primary science objectives for this concept.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology Science Conference AbSciCon2006, Ronald Reagan Center; Mar 27, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...