ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-03-01
    Description: Field, micromorphological, pollen, whole soil (XRF), and stable isotope geochemical methods were used to evaluate the latest Pleistocene to Holocene climate record from a floodplain–terrace system in southeastern West Virginia. A late Pleistocene (22,940 ± 150 14C yr B.P.) silt paleosol with low-chroma colors formed from fluviolacustrine sediment deposited during the last glacial maximum (Wisconsinan) and records a cooler full-glacial paleoclimate. Fluvial gravel deposited between the latest Pleistocene and earliest Holocene (prior to 6360 ± 40 14C yr B.P.) was weathered in the middle Holocene under warmer, drier climate conditions, possibly correlated with the Hypsithermal and Altithermal Events of the eastern and southwestern United States, respectively. The glacial to interglacial climate shift is recorded by: (1) changes from a poorly drained landscape with fine-textured soil, characterized by high organic C and redoximorphic features related to Fe removal and concentration, to a well-drained, coarse-textured setting without gley and with significant argillic (Bt) horizon development; (2) changes from a high Zr and Ti silt-dominated parent material to locally derived, coarse fluvial gravels lower in Zr and Ti; (3) a shift from dominantly conifer and sedge pollen in the paleosol to a modern oak/hickory hardwood assemblage; and (4) a shift in δ13C values of soil organic matter from −28‰ to −24‰ PDB, suggesting an ecosystem shift from cooler, C3-dominated flora to one that was mixed C3 and C4, but still predominantly composed of C3 plants. A root-restrictive placic horizon developed between the late Pleistocene silt paleosol and the overlying fluvial gravel because of the high permeability contrast between the two textures of soil materials. This layer formed a barrier that effectively isolated the Pleistocene paleosol from later Holocene pedogenic processes.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...