ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 2000-2004  (12)
  • 2004  (12)
Collection
Years
  • 2000-2004  (12)
Year
  • 1
    Publication Date: 2018-06-06
    Description: Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe~~. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different sources in East Asia.
    Keywords: Meteorology and Climatology
    Type: International Radiation Symposium 2004; Aug 23, 2004 - Aug 28, 2004; Busan; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.
    Keywords: Meteorology and Climatology
    Type: 2004 American Geophysical Union Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: I shall review current efforts on measurement based assessment of the aerosol radiative effects at the top of the atmosphere using MODIS, CERES and VIRS instruments, and radiative effects at the surface using AERONET. I shall also discuss use of the MODIS derived fine aerosol fraction for assess the anthropogenic component.
    Keywords: Earth Resources and Remote Sensing
    Type: AeroCom Workshop; Mar 10, 2004 - Mar 12, 2004; Ispra; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: The 1.38 micron channel on the MODerate resolution Imaging Spectroradiomater (MODIS) is an ideal channel to identify and quantify thin cirrus on a global basis. This channel is used to produce the cirrus reflectance product in MOD06 and also used extensively by the MODIS aerosol algorithms to mask clouds for the MOD04 product. The aerosol product uses a lower threshold of the 1.38 micron channel reflectance of 0.01. A cirrus channel reflectance of 0.01 corresponds to approximately an aerosol optical thickness of 0.10. Therefore, the ambiguity due to the minor cirrus contamination may introduce artificial optical thickness in the aerosol products. The questions arise: How prevalent are the thinnest cirrus clouds over the globe? Do they persist over specific regions and seasons? Can we distinguish between the noise of the channel and the actual cloudiness by extrapolating the cloudiness signal to very dark scenes, statistically. We analyze the Terra data, over land and ocean to answer these questions.
    Keywords: Meteorology and Climatology
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
    Keywords: Earth Resources and Remote Sensing
    Type: 8th International Global Atmospheric Chemistry Conference; Sep 04, 2004 - Sep 09, 2004; Christchurch; New Zealand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
    Keywords: Meteorology and Climatology
    Type: 2004 American Geophysical Union Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.
    Keywords: Environment Pollution
    Type: International Geoscience and Remote Sensing Symposium; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 American Geophysical Union Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Satellite measurements of aerosol do not contain information on the chemical composition needed to resolve anthropogenic vs. natural aerosol components. Besides, the same chemical species can have natural and anthropogenic origins. However the ability of the new satellite instruments (MODIS, MISR, POLDER) to distinguish fine from coarse aerosols over the oceans, can be used as a signature of the presence of anthropogenic component and used to measure the fraction of the aerosol originating from anthropogenic activity with an uncertainty of 10 percent for aerosol optical thickness larger than 0.1. We develop the methods and investigated it using model calculations (GOCART) and satellite data (MODIS). Preliminary application to 2 years of global MODIS data shows that 0.200.08 of the aerosol optical thickness and radiative effect has anthropogenic origin. The resultant aerosol forcing over cloud free oceans is 1.30.6 W/sq m, larger than model simulations. Further research until the presentation will probably modify these values.
    Keywords: Meteorology and Climatology
    Type: 2004 American Geophysical Union Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...