ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
  • 1995-1999
  • 2003  (4)
Collection
Publisher
Years
  • 2000-2004  (4)
  • 1995-1999
Year
  • 1
    Publication Date: 2003-04-01
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Even though the Early Noachian (EN) used in geologic mapping is undefined at the early end, it is often assumed in absolute chronologies to extend back to 4.6 BYA. We explored this assumption by searching for evidence of buried impact basins, in the largest occurrences of Early Noachian terrain. The hypothesis is that if such basins exist, they indicate crust which must predate the surface units mapped as the oldest on Mars, and those units must then be less than 4.6 BY old. Alternatively, if no such buried features are seen, then the surface units may represent crust of the same age below, which could in principle be as old as Mars. Here we show the former alternative is true. There must be crust older than the oldest mapped surface units. We also show that a number of Noachian terrains on Mars appear to have a common total (visible + buried) crater retention age. This might be either the age of the original (planet-wide?) crust of Mars, or may indicate crater saturation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: MOLA gridded data shows clear evidence for Quasi-Circular Depressions not visible on images in Early Noachian (EN) terrain units on Mars. We suggest these are buried impact basins that pre-date the superimposed craters whose high density makes these EN units the oldest visible at the surface of Mars. There is crust older than the oldest visible terrain units on Mars, and these EN units cannot date from 4.6 BYA. These and other Noa-chian units have similar total (visible + buried) crater retention ages, suggesting a common "pre-Noachian" crustal age OR crater saturation beyond which we cannot see.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 16, 2003 - Mar 20, 2003; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Ultrasail is a complete sail system for the launch, deployment, stabilization and control of very large solar sails enabling reduced mission times for interplanetary and deep space spacecraft. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying microsatellites with an innovative solar sail architecture to achieve sq km-class controllable sail areas, sail subsystem area densities of 1 gm per sq m, and thrust levels equivalent to 400 kW ion thruster systems used for comparable deep space missions. Ultrasail can conceivably even achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. Ultrasail is a Delta IV-launched multi-blade spin-stabilized system with blade lengths as long as 50 km, reminiscent of the MacNeal Heliogyro. The primary innovation is the near-elimination of sail supporting structures by attaching the sail tip to a rigid formation-flying microsatellite truss which deploys the sail blade, and which then articulates the blade to provide attitude control, including spin stabilization and precession of the spin axis. These tip microsatellites are controlled by a solar-powered 3-axis microthruster system (electric or cold gas) to maintain proper sail film tension during deployment and spin-up. The satellite mass also provides a stabilizing centrifugal force on the blade while in rotation. Understanding the dynamics of individual blades is key to the overall dynamics of Ultrasail. Forces and torques that must be modeled include those due to solar pressure, those generated by the microsatellite at the blade tip and by torques applied at the blade root. Centrifugal forces also play a significant role in the deployment and maintenance of the sail configuration. To capture the dynamics of the overall system, the equations of motion for the blades have been derived. Using these differential equations, a control law will be derived to maneuver Ultrasail. This law involves the pitching of the individual blades thereby moving the distribution of the radiation pressure on each individual blade and inducing a resultant torque on the system. The direction of the angular momentum vector and its rate of precession can be controlled through the pitch angle of the blades. The Ultrasail trajectory is also being studied. Optimal or near-optimal trajectories are being generated to showcase Ultrasail performance. Various missions, e.g. outer planet and solar polar missions for observation of the Sun, are currently being investigated to demonstrate the performance enhancements generated by Ultrasail technology. Calculus-of-variations-based optimization software is used to produce optimal Ultrasail trajectories. The performance of these trajectories is being compared to optimal results generated with other propulsion models, including chemical propulsion, ion propulsion, and competing solar sail concepts. Results of these studies will quantify the performance of Ultrasail compared to existing solar sail concepts for high energy missions.
    Keywords: Spacecraft Propulsion and Power
    Type: Advance Space Propulsion Workshop; Apr 15, 2003 - Apr 17, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...