ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Solar Physics  (2)
  • Aerospace Medicine
  • 2005-2009
  • 2000-2004  (3)
  • 2003  (3)
  • 1
    Publication Date: 2019-07-18
    Description: The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, 'High-Resolution Solar Magnetography from Space: Beyond Solar-B,' held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (less than 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (less than 50km) over a large FOV (approximately 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of less than 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: (1) Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals; (2) The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.
    Keywords: Solar Physics
    Type: Solar Physics Division/American Astronomical Society Meeting; Jun 16, 2003 - Jun 19, 2003; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Solar physics has been successful in characterizing the full vector magnetic field in the photosphere, where the ratio of gas pressure to magnetic pressure (Beta) is 〉1. However, at higher levels in the atmosphere, where Beta 〈〈1 and flares and CMEs are believed to be triggered, observations are difficult, severely limiting the understanding of these processes. In response to this situation, we are developing SUMI (the Solar Ultraviolet Magnetograph Investigation) a unique instrument designed to measure the circular and linear polarization of upper chromospheric Mg II lines (280 nm) and circular polarization of transition region C IV lines (155 nm). To date the telescope mirrors have been built, tested and coated with dielectric stacks designed to reflect only the wavelengths of interest. We have also developed a unique UV polarimeter and completed the design of a high-resolution spectrograph that uses dual toroidal varied- line-space (TVLS) gratings. Incorporating measurements of those components developed so far, the revised estimate of the system throughput exceeds our original estimate by more than an order of magnitude. A sounding rocket flight is anticipated in 2006. Our objectives and progress are detailed in this presentation.
    Keywords: Solar Physics
    Type: 34th Meeting of the Solar Physics Division of the American Astronomical Society; Jun 16, 2003 - Jun 20, 2003; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight. INTRODUCTION: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. MATERIALS AND METHODS: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. RESULTS: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p 〈 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. CONCLUSIONS: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative effects of simulated weightlessness on bone metabolism. This protocol may pave the way to counteracting bone loss during spaceflight and may provide valuable information about normal and abnormal bone physiology here on Earth.
    Keywords: Aerospace Medicine
    Type: JSC-CN-7846 , Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); 18; 12; 2223-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...