ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (15)
  • 2000-2004  (15)
  • 2002  (15)
Sammlung
Datenquelle
Erscheinungszeitraum
  • 2000-2004  (15)
Jahr
  • 1
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2011-08-24
    Beschreibung: Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Nature (ISSN 0028-0836); Volume 419; 6903; 215-23
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-08-29
    Beschreibung: Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies in polar orbit on the Terra platform, are used to derive the aerosol optical thickness and properties over land and ocean. The relationships between visible reflectance (at blue, rho(sub blue), and red, rho(sub red)) and mid-infrared (at 2.1 microns, rho(sub 2.1)) are used in the MODIS aerosol retrieval algorithm to derive global distribution of aerosols over the land. These relations have been established from a series of measurements indicating that rho(sub blue) is approximately 0.5 rho(sub red) is approximately 0.25 rho(sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. Calculations for a wide range of leaf area indices and vegetation fractions show that rho(sub blue) is consistently about 1/4 of rho(sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho(sub red)/rho(sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation, to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
    Schlagwort(e): Earth Resources and Remote Sensing
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-06-06
    Beschreibung: Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Schlagwort(e): Earth Resources and Remote Sensing
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-06-06
    Beschreibung: The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust aerosol transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ aerosol measurements. Over the ocean, the MODIS algorithm retrieves aerosol optical depth (AOD) as well as information about the aerosols size distribution. During PRIDE, MODIS derived AODs in the red wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.
    Schlagwort(e): Geophysics
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: In the talk I shall review the MODIS use of spectral information to derive aerosol size distribution, optical thickness and reflected spectral flux. The accuracy and validation of the MODIS products will be discussed. A few applications will be shown: inversion of combined MODIS+lidar data, aerosol Anthropogenic direct forcing, and dust deposition in the Atlantic Ocean. I shall also discuss the aerosol information that MODIS is measuring: real ref index, single scattering albedo, size of fine and coarse modes, and describe the AEROSAT concept that uses bright desert and glint to derive aerosol absorption.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Aerosol-Cloud-Precip Science Workshop; Aug 05, 2003 - Aug 07, 2003; Ventura Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-18
    Beschreibung: We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-18
    Beschreibung: Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: NCAR Conference; Jul 09, 2002 - Jul 17, 2002; Boulder, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-18
    Beschreibung: The MODIS (Moderate Resolution Imaging Spectroradiometer) instruments collect daily measurements of our planet since early 2000 from the Terra spaceborne polar platform. It has unique channels to observe smoke over land and ocean and to observe fires. Using unsaturated channels at 3.9 micron MODIS detects the fires and estimates the fire radiative energy. Using solar channels in the visible (0.47 and 0.66 micron) and in the mid IR (2.1 micron) MODIS measures the smoke optical thickness distribution and evolution over the land. Seven Channels in the solar spectrum are used to detect the smoke properties and distribution over the oceans. Data from the Aerosol Robotic Network, are used to validate the MODIS observations. The MODIS aerosol data presented in a movie form is used to observe the generation of smoke plumes and their dispersion around the globe. For example a key conclusion is that smoke in particular from Southern Africa can pollute significantly the 'pristine' Southern Hemisphere zonal range of 45'S-60'S, and the Northern Pacific.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: 2002 American Geophysical Union Spring Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-18
    Beschreibung: The NASA Moderate Resolution Imaging Spectrometer (MODIS) on the Terra Spacecraft has been collecting scientific data since February of 2000. MODIS is a major facility instrument for remote sensing of the atmosphere, land surfaces, and ocean color. On the MODIS instruments, there are five channels located within and around the .0.94 micron water vapor band absorption region for remote sensing of atmospheric water vapor. There is also a channel located at 1.375 micron for detecting thin cirrus clouds. We will describe the basic principles for using these near-IR channels for remote sensing of water vapor and high clouds. Based on our analysis of two years# measurements with these channels, we have found that reliable observations of water vapor and high clouds on regional and global scales can be made. We will present results on daily, seasonal and annual variations of water vapor and high clouds.
    Schlagwort(e): Instrumentation and Photography
    Materialart: Optical Remote Sensing of the Atmosphere and Clouds III; Oct 23, 2002 - Oct 27, 2002; Hangzhou; China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-18
    Beschreibung: Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere.
    Schlagwort(e): Environment Pollution
    Materialart: Air Pollution / Aerosol Workshop; Apr 28, 2002 - May 10, 2002; HI; United States|Air Pollution Worshop / Aerosol Workshop; Apr 28, 2002 - May 10, 2002; China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...