ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • National Academy of Sciences
  • Nature Publishing Group
  • 2000-2004  (4)
  • 2002  (4)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (4)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • National Academy of Sciences
  • Nature Publishing Group
Years
  • 2000-2004  (4)
Year
  • 1
    Publication Date: 2002-05-23
    Description: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peier, Andrea M -- Reeve, Alison J -- Andersson, David A -- Moqrich, Aziz -- Earley, Taryn J -- Hergarden, Anne C -- Story, Gina M -- Colley, Sian -- Hogenesch, John B -- McIntyre, Peter -- Bevan, Stuart -- Patapoutian, Ardem -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2046-9. Epub 2002 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016205" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Newborn ; Blotting, Northern ; CHO Cells ; Capsaicin/*analogs & derivatives/pharmacology ; *Cation Transport Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Cricetinae ; Epidermis/cytology/innervation/metabolism ; Ganglia, Spinal/metabolism ; *Hot Temperature ; Humans ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*metabolism ; Keratinocytes/*metabolism ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Nerve Endings/physiology ; Neurons/physiology ; Patch-Clamp Techniques ; RNA, Messenger/genetics/metabolism ; Ruthenium Red/pharmacology ; Signal Transduction ; Spinal Cord/metabolism ; TRPV Cation Channels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-04-20
    Description: Recombinant proteins containing tetracysteine tags can be successively labeled in living cells with different colors of biarsenical fluorophores so that older and younger protein molecules can be sharply distinguished by both fluorescence and electron microscopy. Here we used this approach to show that newly synthesized connexin43 was transported predominantly in 100- to 150-nanometer vesicles to the plasma membrane and incorporated at the periphery of existing gap junctions, whereas older connexins were removed from the center of the plaques into pleiomorphic vesicles of widely varying sizes. Selective imaging by correlated optical and electron microscopy of protein molecules of known ages will clarify fundamental processes of protein trafficking in situ.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaietta, Guido -- Deerinck, Thomas J -- Adams, Stephen R -- Bouwer, James -- Tour, Oded -- Laird, Dale W -- Sosinsky, Gina E -- Tsien, Roger Y -- Ellisman, Mark H -- DC03192/DC/NIDCD NIH HHS/ -- NS14718/NS/NINDS NIH HHS/ -- NS27177/NS/NINDS NIH HHS/ -- P01 DK54441/DK/NIDDK NIH HHS/ -- R01 GM065937/GM/NIGMS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):503-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964472" target="_blank"〉PubMed〈/a〉
    Keywords: 3,3'-Diaminobenzidine/chemistry ; Amino Acid Motifs ; Animals ; Arsenicals/metabolism ; Cell Line ; Cell Membrane/metabolism/ultrastructure ; Connexin 43/biosynthesis/*metabolism ; Cysteine/chemistry ; Endocytosis ; Exocytosis ; Fluoresceins/metabolism ; Fluorescence ; Fluorescent Dyes/metabolism ; Gap Junctions/*metabolism/ultrastructure ; HeLa Cells ; Humans ; Microscopy, Confocal ; Microscopy, Electron ; Microscopy, Immunoelectron ; Organometallic Compounds/metabolism ; Oxazines/metabolism ; Patch-Clamp Techniques ; Protein Transport ; Recombinant Proteins/metabolism ; Transport Vesicles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-02-09
    Description: Lamellipodia are thin, veil-like extensions at the edge of cells that contain a dynamic array of actin filaments. We describe an approach for analyzing spatial regulation of actin polymerization and depolymerization in vivo in which we tracked single molecules of actin fused to the green fluorescent protein. Polymerization and the lifetime of actin filaments in lamellipodia were measured with high spatial precision. Basal polymerization and depolymerization occurred throughout lamellipodia with largely constant kinetics, and polymerization was promoted within one micron of the lamellipodium tip. Most of the actin filaments in the lamellipodium were generated by polymerization away from the tip.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Naoki -- Mitchison, Timothy J -- GM48027/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1083-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. naoki_watanabe@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834838" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line ; *Cytoskeletal Proteins ; *Depsipeptides ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; Half-Life ; Luminescent Proteins ; Models, Biological ; Peptides, Cyclic/pharmacology ; Pseudopodia/*metabolism/ultrastructure ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-09-14
    Description: Mechanisms regulating self-renewal and cell fate decisions in mammalian stem cells are poorly understood. We determined global gene expression profiles for mouse and human hematopoietic stem cells and other stages of the hematopoietic hierarchy. Murine and human hematopoietic stem cells share a number of expressed gene products, which define key conserved regulatory pathways in this developmental system. Moreover, in the mouse, a portion of the genetic program of hematopoietic stem cells is shared with embryonic and neural stem cells. This overlapping set of gene products represents a molecular signature of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivanova, Natalia B -- Dimos, John T -- Schaniel, Christoph -- Hackney, Jason A -- Moore, Kateri A -- Lemischka, Ihor R -- DK42989/DK/NIDDK NIH HHS/ -- DK54493/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):601-4. Epub 2002 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228721" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Communication ; Cell Cycle ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Computational Biology ; Embryo, Mammalian/cytology ; Expressed Sequence Tags ; *Gene Expression ; *Gene Expression Profiling ; Genes, Homeobox ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Humans ; Mice ; Neurons/cytology ; Oligonucleotide Array Sequence Analysis ; Signal Transduction ; Stem Cells/*physiology ; Totipotent Stem Cells/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...