ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
  • 2015-2019  (4)
  • 2000-2004
  • 1985-1989
  • 1945-1949
  • 1920-1924
  • 2018  (1)
  • 2015  (3)
  • 2002
  • 1
    Publication Date: 2015-02-12
    Description: Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributed numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south-western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software COMSOL Multiphysics® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is possible not only to derive a consistent flow and transport model for a 150 km2 karst area but also to combine the use of groundwater flow and transport parameters thereby greatly reducing model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m3.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-16
    Description: Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were invesigated with the chemistry transport model CMAQ for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5%, respectively, by 2030 if no regulation for further emission reductions will be implemented in the North Sea area. PM2.5 will decrease slightly because the sulphur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from new built ships.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-23
    Description: Air pollution due to shipping is a serious concern for coastal regions in Europe. Shipping emissions of nitrogen oxides (NOx) to air on the Baltic Sea are of similar magnitude (330kty−1) as the combined land-based NOx emissions from Finland and Sweden in all emission sectors. Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic Sea and coastal areas in the Baltic Sea region. For the North Sea and the Baltic Sea a nitrogen emission control area (NECA) will become effective in 2021; in accordance with the International Maritime Organization (IMO) target of reducing NOx emissions from ships. Future scenarios for 2040 were designed to study the effect of enforced and planned regulation of ship emissions and the fuel efficiency development on air quality and nitrogen deposition. The Community Multiscale Air Quality (CMAQ) model was used to simulate the current and future air quality situation. The meteorological fields, the emissions from ship traffic and the emissions from land-based sources were considered at a grid resolution of 4×4km2 for the Baltic Sea region in nested CMAQ simulations. Model simulations for the present-day (2012) air quality show that shipping emissions are the major contributor to atmospheric nitrogen dioxide (NO2) concentrations over the Baltic Sea. In the business as usual (BAU) scenario, with the introduction of the NECA, NOx emissions from ship traffic in the Baltic Sea are reduced by about 80% in 2040. An approximate linear relationship was found between ship emissions of NOx and the simulated levels of annual average NO2 over the Baltic Sea in year 2040, when following different future shipping scenarios. The burden of fine particulate matter (PM2.5) over the Baltic Sea region is predicted to decrease by 35–37% between 2012 and 2040. The reduction of PM2.5 is larger over sea, where it drops by 50–60% along the main shipping routes, and smaller over the coastal areas. The introduction of NECA is critical for reducing ship emissions of NOx to levels that are low enough to sustainably dampen ozone (O3) production in the Baltic Sea region. A second important effect of the NECA over the Baltic Sea region is the reduction of secondary formation of particulate nitrate. This lowers the ship-related PM2.5 by 72% in 2040 compared to present-day, while it is reduced by only 48% without implementation of the NECA. The effect of a lower fuel efficiency development on the absolute ship contribution of air pollutants is limited. Still, the annual mean ship contributions in 2040 to NO2, sulphur dioxide and PM2.5 and daily maximum O3 is significantly higher if a slower fuel efficiency development is assumed. Nitrogen deposition to the seawater of the Baltic Sea decreases on average by 40–44% between 2012 and 2040 in the simulations. The effect of the NECA on nitrogen deposition is most significant in the western part of the Baltic Sea. It will be important to closely monitor compliance of individual ships with the planned nitrogen emission regulations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-16
    Description: The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m−2, diffuse: 500 W m−2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m−2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other regions, thus saving high development costs.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...