ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (17)
  • 2000-2004  (17)
  • 1985-1989
  • 2001  (17)
  • 1
    Publication Date: 2011-08-24
    Description: It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.
    Keywords: Life Sciences (General)
    Type: Carcinogenesis (ISSN 0143-3334); Volume 22; 5; 701-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.
    Keywords: Life Sciences (General)
    Type: American journal of physiology. Regulatory, integrative and comparative physiology (ISSN 0363-6119); Volume 281; 5; R1647-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.
    Keywords: Acoustics
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Type: XSpace 2001- XML for Space Data; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: Office of Space Science E/PO Conference; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center and the U.S. Department of Energy are currently developing a high-efficiency, long-life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Converter (TDC), developed by Stirling Technology Company for the Department of Energy, was vibration tested at Glenn's Structural Dynamics Laboratory in November and December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hz) seen during a typical spacecraft launch and to survive with no structural damage or functional power performance degradation, thereby enabling its use in future spacecraft power systems. Glenn and Stirling personnel conducted tests on a single 55 We TDC. The purpose was to characterize the TDC's structural response to vibration and to determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The Magnetospheric Imaging Constellation (MagIC) is a NASA space science concept to study the Earth's Magnetosphere. The concept proposes to apply tomography techniques using an array of spacecraft to obtain three dimensional images of the Earth's magnetosphere. This paper presents an optimal orbit design to ensure that the constellation is in the desired region of the magnetosphere for maximum time. The solution is found using a steepest descent optimization algorithm that takes into account perturbations from the non-spherical Earth, drag, Sun, Moon and other significant bodies. The solution also satisfies constraints on maximum eclipse duration and geometry constraints to allow an adequate GPS navigation solution. We present three solutions depending upon the epoch of the primary science: vernal equinox, summer solstice, and a third midway between the vernal equinox and summer solstice. Orbit insertion is also considered. All spacecraft are assumed to be launched on a single vehicle into a nominal orbit and the (Delta)V's to achieve the nominal orbit are presented. After insertion into the nominal orbit, each spacecraft undergoes a phasing maneuver to place it in the appropriate position with respect to the rest of the constellation. We present a minimum fuel approach to maneuver each spacecraft from the nominal orbit into the desired final orbit.
    Keywords: Astrodynamics
    Type: 16th International Symposium on Space Flight Dynamics; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.
    Keywords: Astrodynamics
    Type: 2001 Flight Mechanics Symposium; 131; NASA/CP-2001-209986
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); 8; 1; P1-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: When one considers space missions to the outer edges of our solar system and far beyond, our sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer solar system, power is knowledge. Solar arrays only operate at 19% efficiency, are very vulnerable to damage from radiation and temperature extremes, and cannot be used for even nearby missions that operate in extended darkness, or under the surface of a planet or moon. Twenty-six U.S. space missions, from the Transit to Cassini, have used radioisotope power systems and heater units to take s/c to the far reaches of our solar system and have demonstrated an outstanding record of safety and reliability. Radioisotope thermoelectric generators (RTG's) have proven to be safe, reliable, maintenance-free, and capable of providing both thermal and electrical power for decades under the harsh environments of deep space. RTG's have no problem operating in the high radiation belts of space, the extreme temperatures, or the severe dust storms of Mars, and they have proven to be the most reliable power source ever flown on U.S. s/c. For example, the two Pioneer s/c operated for more than two decades and the Voyager s/c may last for 40 years. RTG's are not nuclear reactors, they serve only as power generators and are not involved in the propulsion of the s/c. They operate on the principle of thermoelectric generation that converts heat directly into electricity, they have no moving parts, are extremely reliable, and have met or exceeded all safety and performance expectations. Federal laws and regulations require analysis and evaluation of the safety risks and any potential environmental impacts. Extensive safety testing of RTG's and RTG components has been performed by the U.S. Department of Energy (DOE) to demonstrate the ability to survive accidents related to Space Shuttle launches and assure that the systems would be safe under all accident conditions, including accidents at or near the launch pad or during orbital reentry. Many design improvements have been made over the four decades that RTG's have been flown on space missions. This paper outlines the operation and safety standards of RTG's and the advanced developments expected to be used on future deep space missions such as the Europa Orbiter, Pluto/Kuiper Express, Solar Probe, Europa Lander, and Titan Explorer missions.
    Keywords: Astronautics (General)
    Type: SWE National Conference; Jun 01, 2001; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...