ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (2)
  • Nucleic Acid Hybridization
  • American Association for the Advancement of Science (AAAS)  (3)
  • PANGAEA
  • 2015-2019
  • 2000-2004  (3)
  • 2001  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • PANGAEA
Years
  • 2015-2019
  • 2000-2004  (3)
Year
  • 1
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-10-06
    Description: Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raghuraman, M K -- Winzeler, E A -- Collingwood, D -- Hunt, S -- Wodicka, L -- Conway, A -- Lockhart, D J -- Davis, R W -- Brewer, B J -- Fangman, W L -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):115-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Department of Mathematics, University of Washington, Seattle, WA 98195, USA. raghu@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588253" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Base Sequence ; Centromere/metabolism ; Chromosomes, Fungal/genetics/*metabolism ; *DNA Replication ; DNA, Fungal/*biosynthesis/genetics/metabolism ; DNA, Intergenic ; Fourier Analysis ; *Genome, Fungal ; Kinetics ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis ; *Replication Origin ; *S Phase ; Saccharomyces cerevisiae/cytology/*genetics/metabolism ; Telomere/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weston, C R -- Davis, R J -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2439-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axin Protein ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cytoplasm/enzymology ; Cytoskeletal Proteins/metabolism ; Drug Design ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3 ; Humans ; Insulin/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; *Repressor Proteins ; *Signal Transduction ; Substrate Specificity ; *Trans-Activators ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...