ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • N remobilization  (1)
  • meristem allocation  (1)
  • 2000-2004  (2)
  • 2000  (2)
  • 1
    ISSN: 1573-8477
    Keywords: apical dominance ; Gentianella ; grazing tolerance ; herbivory ; meristem allocation ; overcompensation ; shoot architecture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Meristem allocation models suggest that the patterns of compensatory regrowth responses following grazing vary, depending on (i) the number of latent meristems that escape from being damaged, and (ii) the activation sensitivity of the meristems in relation to the degree of damage. We examined the shape of compensatory responses in two late-flowering populations (59°20′N and 65°45′N) of the field gentian. Plants of equal initial sizes were randomly assigned to four treatment groups with 0, 10, 50 and 75% removal of the main stalk. The plants were clipped before flowering, and their performance was studied at the end of the growing season. The northern population showed a linear decrease in shoot biomass and fecundity with increasing biomass removal, while the response in the southern population was quadratic with maximum performance at the damage level of 50% clipping. This nonlinear shape depended upon the activation sensitivity of dormant meristems in relation to their position along the main stem. The highest plant performance was achieved by inflicting intermediate damage which induced regrowth from basally located meristems. In contrast, the topmost branches took over the dominance role of the main stem after minor apical damage (10% clipping). Consequently, the breakage of apical dominance is a necessary precondition of vigorous regrowth in this species. However, compensation in the field gentian is unlikely to be a mere incidental by-product of apical dominance. The ability to regrow from basally located meristems that escape from being damaged by grazing may well be a sign of adaptation to moderate levels of shoot damage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: ammonium uptake ; HATS ; LATS ; N remobilization ; nitrate uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Several studies have previously shown that shoot removal of forage species, either by cutting or herbivore grazing, results in a large decline in N uptake (60%) and/or N2 fixation (80%). The source of N used for initial shoot growth following defoliation relies mainly on mobilisation of N reserves from tissues remaining after defoliation. To date, most studies investigating N-mobilisation have been conducted, with isolated plants grown in controlled conditions. The objectives of this study were for Lolium perenne L., grown in a dense canopy in field conditions, to determine: 1) the contribution of N-mobilisation, NH4 + uptake and NO3 - uptake to growing shoots after defoliation, and 2) the contribution of the high (HATS) and low (LATS) affinity transport systems to the total plant uptake of NH4 + and NO3 -. During the first seven days following defoliation, decreases in biomass and N-content of roots (34% and 47%, respectively) and to a lesser extent stubble (18% and 43%, respectively) were observed, concomitant with mobilisation of N to shoots. The proportion and origin of N used by shoots (derived from reserves or uptake) was similar to data reported for isolated plants. Both HATS and LATS contributed to the total root uptake of NH4 + and NO3 -. The Vmax of both the NH4 + and NO3 - HATS increased as a function of time after defoliation, and both HATS systems were saturated by substrate concentrations in the soil at all times. The capacity of the LATS was reduced as soil NO3 - and NH4 + concentrations decreased following defoliation. Data from 15N uptake by field-grown plants, and uptake rates of NH4 + and NO3 - estimated by excised root bioassays, were significantly correlated, though uptake was over-estimated by the later method. The results are discussed in terms of putative mechanisms for regulating N uptake following severe defoliation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...