ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (4)
  • Meteorology and Climatology  (4)
  • Nonmetallic Materials  (2)
  • 2000-2004  (10)
  • 2000  (10)
Collection
Years
  • 2000-2004  (10)
Year
  • 1
    Publication Date: 2009-05-04
    Description: Apart from the "shaking" near the epicenter that is the earthquake, a seismic event creates a permanent field of dislocation in the entire Earth. This redistribution of mass changes (slightly) the Earth's inertia tensor; and the Earth's rotation will change in accordance with the conservation of angular momentum. Similar to this seismic excitation of Earth rotation variations, the same mass redistribution causes (slight) changes in the Earth's gravitational field expressible in terms of changes in the Stokes coefficients of its harmonic expansion. In this paper, we give a historical background of the subject and discuss the related physics; we then compute the geodynamic effects caused by earthquakes based on normal-mode summation scheme. The effects are computed using the centroid moment tensor (CMT) solutions for 15,814 major earthquakes from Jan., 1977, through Feb., 1999, as provided in the Harvard CMT catalog. The computational results further strengthens these findings and conclusions: (i) the strong tendency for earthquakes to make the Earth rounder and more compact (however slightly) continues; (ii) so does the trend in the seismic "nudging" of the rotation pole toward the general direction of approx. 140 E, roughly opposite to that of the observed polar drift, but two orders of magnitude smaller in drift speed.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The numerical simulation of precipitation helps scientists understand the complex mechanisms that determine how and why rainfall is distributed across the globe. Simulation aids in the development of forecastin,g efforts that inform policies regarding the management of water resources. Precipitation modeling also provides short-term warnings, for emergencies such as flash floods and mudslides. Just as precipitation modeling can warn of an impending abundance of rainfall, it can help anticipate the absence of rainfall in drought. What constitutes a drought? A meteorological drought simply means that an area is getting a significantly lower amount of rain than usual over a prolonged period of time and an agricultural drought is based on the level of soil moisture.
    Keywords: Meteorology and Climatology
    Type: 2000 NCCS Highlights: Enabling NASA Earth and Space Sciences; 56-65
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: Gravity, Geoid and Geodynamics; Banff, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: Analysis of this century's sea surface temperatures over the Pacific Ocean reveals an interdecadal oscillation with a period of 14-17 years.
    Keywords: Geophysics
    Type: Geophysical Research Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.
    Keywords: Nonmetallic Materials
    Type: 24th Annual Conference on Composites, Materials and Structures; Jan 24, 2000 - Jan 28, 2000; Cocoa Beach, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Past studies have examined the effects of the interannual atmospheric oscillations (IAO), or often called teleconnection patterns, on the Earth's rotation, such as El Nino/Southern Oscillation (ENSO), the quasi-biennial oscillation, and to a lesser extent the North Atlantic Oscillation (NAO). The present study focuses on IAO's effects on the gravitational field and geocenter; the purpose is to be able to identify and isolate the contributions of each prominent IAO in relation to the total contribution of the atmosphere, in terms of their magnitudes, their geographical patterns, and their interannual time history. We use the 40-year NCEP reanalysis of the monthly, global atmospheric surface pressure field as our basic data set. The method we apply to isolate the IAOs is the empirical orthogonal function (EOF) decomposition which is widely used in meteorological investigations. We do the EOF analysis first on IAOs' seasonal signals (by "collapsing" the 40-year series into 12 mean-months for each grid point) and obtain estimates for their respective contributions. Then we remove these seasonal signals from the data to focus on the (broad-band) interannual EOFs. We examine ENSO, NAO, North Pacific Oscillation, and other less prominent IAOs that can be identified from our data set, and compute their respective contributions to the variation of global gravitational field and geocenter motion. Finally, we compare the results with the available observational data, and discuss the implications w.r.t. the upcoming space missions such as GRACE.
    Keywords: Geophysics
    Type: Apr 25, 2000 - Apr 29, 2000; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-16
    Description: The notion that the continental-scale land-sea contrast is the main reason that monsoon circulation exists has been a long-held belief. The purpose of this paper is to point out that this notion should be substantially modified. The central idea of this notion states that in summer, radiative heating of the continent, say Asia, gives rise to a continental-scale thermal low and surrounding the thermal low in its southeast direction the low level wind flows in from south-west. This low-level inflow creates a convergence of moisture, which maintains the cumulus convection. And in winter, radiative cooling of continent gives rise to a thermal high and to its southeast the low-level wind is from northeast. The mechanism in this interpretation does undoubtedly exist. However, this mechanism, though believed to be the main driving force of monsoon, has not been tested in numerical experiments. There has been an increasing recognition in the recent years that monsoon is inextricably tied to the heating in the intertropical convergence zone (ITCZ). We propose that the main cause of monsoon is ITCZ's being substantially away from the equator. A brief qualitative explanation of why the ITCZ can be a source of monsoon circulation can be offered based on the circulation field forced by the ITCZ heating. The existence of the ITCZ's does not always have to rely on land-sea contrast on the continental scale. This is hinted in the fact that in February the ITCZ close to Australia (and its associated monsoon circulation) covers a longitudinal range several times as long as that of Australia and thus cannot possibly be caused mainly by the land-sea contrast associated with Australia. Yet, this cannot be used as a proof that the ITCZ in the Asian summer monsoon is not mainly due to land-sea contrast. One of the purposes of this work is to provide a convincing proof. In this work the role of land-sea contrast in the origin of monsoon is examined through numerical simulation with the Goddard general circulation model. The Asian and Australian monsoon circulations are obtained in a four-year integration and then the integration is repeated with Asia, the maritime continent, and Australia replaced by ocean. The sea surface temperature (SST) at each affected grid is specified as the SST at the first grid to the east that is an ocean grid in the first experiment. The latter integration shows that the monsoon circulation pattern over where south Asia and Australia were and the surrounding region has largely remained. The results discount land-sea contrast as the main cause of Asian monsoon. A third experiment is the same as the first except that the topography of Asia, the maritime continent, and Australia is reduced to zero. This experiment reveals that the difference between the first two experiments is due more to the removal of topography than to the removal of land-sea contrast. August precipitation is shown averaged over the last three years of each of the three experiments. They show that the Asian monsoon rainy region is largely intact in the second experiment and the difference between the second and the third experiment is mainly in the longitudinal location of the maximum precipitation. Additionally, in Asian and Australian winter monsoons land-sea contrast also plays only a modifying role. Although land-sea contrast plays only a modifying role in Asian and Australian (and Central American including Mexican) monsoons, it is the main reason that ITCZ (and thus monsoon) exists in Africa and South America. Thus, monsoons can be classified into two groups depending on whether land-sea contrast plays a major role.
    Keywords: Meteorology and Climatology
    Type: Hurricanes; May 29, 2000 - Jun 02, 2000; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.
    Keywords: Nonmetallic Materials
    Type: NASA/TP-2000-209760 , S-852 , NAS 1.60:209760
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...