ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • American Institute of Physics (AIP)  (1)
  • Association of Environmental and Engineering Geologists  (1)
  • Blackwell Science Inc  (1)
  • American Association for the Advancement of Science (AAAS)
  • Geological Society of London
  • PANGAEA
  • 2000-2004  (3)
  • 2000  (3)
Collection
  • Articles  (3)
Publisher
Years
  • 2000-2004  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 18 (2000), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Following the early Eocene collision of the Indian and Asian plates, intracontinental subduction occurred along the Main Central Thrust (MCT) zone in the High Himalaya. In the Kishtwar–Zanskar Himalaya, the MCT is a 2 km thick shear zone of high strain, distributed ductile deformation which emplaces the amphibolite facies High Himalayan Crystalline (HHC) unit south-westwards over the lower greenschist facies Lesser Himalaya. An inverted metamorphic field gradient, mapped from the first appearance of garnet, staurolite and kyanite index minerals, is coincident with the high strain zone. Petrography and garnet zoning profiles indicate that rocks in the lower MCT zone preserve a prograde assemblage, whereas rocks in the HHC unit show retrograde equilibration. Thermobarometric results derived using THERMOCALC indicate a P–T  increase of c. 180 °C and c. 400 MPa across the base of the MCT zone, which is a consequence of the syn- to postmetamorphic juxtaposition of M1 kyanite grade rocks of the HHC unit on a cooling path over biotite grade footwall rocks, which subsequently attain their peak (M2) during thrusting. Inclusion thermobarometry from the lower MCT zone reveals that M2 was accompanied by loading, and peak conditions of 537±38 °C and 860±120 MPa were attained. M1 kyanite assemblages in the HHC unit, which have not been overprinted by M2 fibrolitic sillimanite, were not significantly affected by M2, and conditions of equilibration are estimated as 742±53 °C and 960±180 MPa.There is no evidence for dissipative or downward conductive heating in the MCT zone. Instead, the primary control on the distribution of peak assemblages, represented by the index minerals, is postmetamorphic ductile thrusting in a downward propagating shear zone. Polymetamorphism and diachroneity of equilibration are also important controls on the thermal profile through the MCT zone and HHC unit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 2265-2273 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Quantum mechanical calculations on the vibrational predissociation dynamics of NeBr2 in the B electronic state have been performed and the results compared with both experimental data and other computational studies. For vibrational levels with v≤20 we find that the vibrational state dependence of the predissociation lifetimes is in qualitative agreement with experimental measurements, as are the calculated Br2 fragment rotational distributions. For higher vibrational levels, the B←X excitation profiles are well represented by a sum of two Lorentzian line shapes. We attribute this result to the presence of long-lived resonances in the dissociative continuum that are reminiscent of long-lived dissociative trajectories in previous classical studies of NeBr2. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-11-01
    Description: Since many engineering projects in rock never mobilize strengths near the uniaxial compressive strength (UCS) of the rock, elastic modulus becomes a critical parameter to describe the rock's behavior under loading. There are a number of methods available for calculating the elastic modulus from laboratory test data, and each method gives a slightly different value. The objective of this study is to evaluate the most repeatable method for each of a number of rock types, and then to develop guidelines to aid the practitioner in selecting the best method as a function of rock behavior. UCS tests were performed on 78 samples of nine rock types, including two basalts, two granites, two limestones, a quartzite, a sandstone, and a gypsum. Elastic moduli were calculated using six different methods reported in the literature or modified for this study. The modified secant and modified secant-at-50-percent-strength moduli (modified by shifting the origin to best intercept the extension of the main straight-line portion of the stress-strain curve) were the most repeatable methods for rocks with elastic and plastic-elastic behavior. Elastic-plastic materials, which have a broad concave-downward stress-strain curve, are best evaluated using the tangent modulus on the upper of two distinct straight-line segments. For materials which show creep or extended plastic deformation with no sharp failure, the secant-at-50-percent-strength modulus and modified secant-at-50-percent-strength modulus are the most repeatable.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...