ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Instrumentation and Photography  (3)
  • 2000-2004  (3)
  • 1955-1959
  • 2000  (3)
Collection
  • Other Sources  (3)
Years
  • 2000-2004  (3)
  • 1955-1959
Year
  • 1
    Publication Date: 2004-12-03
    Description: A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 1; 182-183; LPI-Contrib-1062-Pt-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers such as the 'Touch and Go' Surface Sampler (TGSS), and then hermetically seal the samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the rotation axis of the TGSS sampler for interfacing, transferring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses multiple isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The TGSS based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. This sample return container is being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program. A breadboard system of the sample return container has been recently completed and tested. Additional information is contained in the original extended abstract.
    Keywords: Instrumentation and Photography
    Type: Near-Earth Asteroid Sample Return Workshop; 38-39; LPI-Contrib-1073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: X-ray microcalorimeters using transition-edge sensors (TES) show great promise for use in astronomical x-ray spectroscopy. We have obtained very high energy resolution (2.8 electronvolts at 1.5 kiloelectronvolts and 3.7 electronvolts at 3.3 kiloelectronvolts) in a large, isolated TES pixel using a Mo/Au proximity-effect bilayer on a silicon nitride membrane. We will discuss the performance and our characterization of that device. In order to be truly suitable for use behind an x-ray telescope, however, such devices need to be arrayed with a pixel size and focal-plane coverage commensurate with the telescope focal length and spatial resolution. Since this requires fitting the TES and its thermal link, a critical component of each calorimeter pixel, into a far more compact geometry than has previously been investigated, we must study the fundamental scaling laws in pixel optimization. We have designed a photolithography mask that will allow us to probe the range in thermal conductance that can be obtained by perforating the nitride membrane in a narrow perimeter around the sensor. This mask will also show the effects of reducing the TES area. Though we have not yet tested devices of the compact designs, we will present our progress in several of the key processing steps and discuss the parameter space of our intended investigations.
    Keywords: Instrumentation and Photography
    Type: GSFC-E-DAA-TN23171 , SPIE Conference on Hard X-Ray and Gamma-Ray Detector Physics; Jul 30, 2000 - Aug 01, 2000; San Diego, CA,; United States|Proceedings of SPIE: X-Ray and Gamma-Ray Instrumentation for Astronomy XI; 4140; 367-375
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...