ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3)
  • 2000-2004  (3)
  • 1960-1964
  • 2000  (3)
  • 1
    ISSN: 1615-6102
    Keywords: Mitogen-activated protein kinase ; Salt stress ; Osmotic stress ; Medicago sati a
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary SIMK is an alfalfa mitogen-activated protein kinase (MAPK) that is activated by salt stress and shows a nuclear localization in suspension-cultured cells. We investigated the localization of SIMK in alfalfa (Medicago sati a) roots. Although SIMK was expressed in most tissues of the root apex, cells of the quiescent center and statocytes showed much lower SIMK protein amounts. In cells of the elongation zone, SIMK was present in much higher amounts in epidermal than in cortex cells. In dividing cells of the root tip, SIMK revealed a cell cycle phase-dependent localization, being predominantly nuclear in interphase but associating with the cell plate and the newly formed cell wall in telophase and early G1 phase. In dividing cells, salt stress resulted in an association of part of the SIMK with the preprophase band. Generally, salt stress resulted in much higher amounts of SIMK in dividing cells of the root apex and epidermal cells of the elongation zone. These data demonstrate that amounts and subcellular localization of SIMK in roots is highly regulated and sensitive to environmental stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 43 (2000), S. 705-718 
    ISSN: 1573-5028
    Keywords: auxin ; cell cycle ; hormones ; MAP kinase ; mitosis ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 42 (2000), S. 791-806 
    ISSN: 1573-5028
    Keywords: cell cycle ; hormones ; MAP kinase ; phosphorylation ; protein kinase ; signal transduction ; stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitogen-activated protein kinase (MAPK) pathways transduce a large variety of external signals in mammals, unicellular eukaryotes, and plants. In recent years, plant MAPK pathways have attracted increasing interest resulting in the isolation of a large number of different components. Studies on the function of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, but also in the signaling of plant hormones and the cell cycle. Besides giving an update on recent results, the success and logic of MAPK-based signal transduction cascades is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...