ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society (APS)
  • Copernicus
  • Molecular Diversity Preservation International
  • 2020-2022
  • 2015-2019
  • 2000-2004  (5)
  • 2000  (5)
  • 1
    Publication Date: 2000-09-30
    Description: An Aggregated Dead Zone (ADZ) model is presented for longitudinal dispersion of tracer in river channels, in which the channel cross-section is divided into two parallel regions: the bulk flow and dead zone storage. Tracer particles in the bulk flow are assumed to obey plug-flow advection at the discharge velocity U without any mixing effects. The dispersive properties of the model are completely embodied in the residence time for tracer storage in the dead zone. The model provides an excellent description and prediction of empirical concentration-time distributions, for times t 〈 x/U. Its physical realism is demonstrated by using it to describe the evolution of a tracer cloud in the River Severn, U.K., and by comparing it with a more complex model which incorporates the additional effects of shear flow dispersion within the bulk flow. The ADZ model is a potentially useful tool for practical prediction of dispersion in natural channels. Keywords: Channels; dispersion; dead zones; tracers; River Severn
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-09-30
    Description: : A tracer experiment using Rhodamine WT dye was carried out to measure longitudinal dispersion in a 14-km reach of the River Severn in Wales, U.K. The river’s discharge was measured at six points and the depth, width and cross-sectional area were measured at 86 points along the test reach. The channel geometry was close to being statistically uniform. Discharge and velocity were both nearly constant. Dye concentrations were recorded at stations between 210 and 13775 m downstream of injection. Dye was injected over a short interval as a near-uniform line source across the channel. These conditions make the data useful for testing mathematical theories of dispersion. They are presented in full. Keywords: Channels; dispersion; tracers; River Severn
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-09-30
    Description: The classical one-dimensional advection-diffusion equation (ADE) gives an inadequate description of tracer cloud evolution in the River Severn, U.K. A solute transport model incorporating the effects of tracer storage in dead zones is presented in which the channel is conceived as being divided into two parallel regions. The bulk flow region occurs in the central part. Its longitudinal dispersive properties are described by the ADE. Adjacent to this, an additional cross-sectional area is defined in which tracer can be stored temporarily in regions of slowly moving water called dead zones. Exchange between the two regions follows a first order rate equation. Applying the model to the River Severn shows that a dispersing cloud’s evolution occurs in two distinct stages with a rapid transitional phase. Initially, shear-dispersion is dominant while the tracer particles mix fully over the bulk flow. Once this has occurred, dead zone storage accounts well for the non-Fickian evolution of the cloud. After the transitional phase the dead zone storage mechanism clearly dominates over shear-dispersion. Overall, the combined shear flow dispersion – dead zone model (D-DZM) provides a much better, physically consistent description of the tracer cloud’s evolution than the simple classical ADE approach can do alone. Keywords: Channels; dispersion; dead zones; tracers; River Severn
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-01-31
    Description: Possible configurations of the magnetic field in the outer magnetosphere during geomagnetic polarity reversals are investigated by considering the idealized problem of a magnetic multipole of order m and degree n located at the centre of a spherical cavity surrounded by a boundless perfect diamagnetic medium. In this illustrative idealization, the fixed spherical (magnetopause) boundary layer behaves as a perfectly conducting surface that shields the external diamagnetic medium from the compressed multipole magnetic field, which is therefore confined within the spherical cavity. For a general magnetic multipole of degree n, the non-radial components of magnetic induction just inside the magnetopause are increased by the factor {1 + [(n + 1)/n]} relative to their corresponding values in the absence of the perfectly conducting spherical magnetopause. An exact equation is derived for the magnetic field lines of an individual zonal (m = 0), or axisymmetric, magnetic multipole of arbitrary degree n located at the centre of the magnetospheric cavity. For such a zonal magnetic multipole, there are always two neutral points and n-1 neutral rings on the spherical magnetopause surface. The two neutral points are located at the poles of the spherical magnetopause. If n is even, one of the neutral rings is coincident with the equator; otherwise, the neutral rings are located symmetrically with respect to the equator. The actual existence of idealized higher-degree (n〉1) axisymmetric magnetospheres would necessarily imply multiple (n + 1) magnetospheric cusps and multiple (n) ring currents. Exact equations are also derived for the magnetic field lines of an individual non-axisymmetric magnetic multipole, confined by a perfectly conducting spherical magnetopause, in two special cases; namely, a symmetric sectorial multipole (m = n) and an antisymmetric sectorial multipole (m = n-1). For both these non-axisymmetric magnetic multipoles, there exists on the spherical magnetopause surface a set of neutral points linked by a network of magnetic field lines. Novel magnetospheric processes are likely to arise from the existence of magnetic neutral lines that extend from the magnetopause to the surface of the Earth. Finally, magnetic field lines that are confined to, or perpendicular to, either special meridional planes or the equatorial plane, when the multipole is in free space, continue to be confined to, or perpendicular to, these same planes when the perfectly conducting magnetopause is present.Key words. Geomagnetism and paleomagnetism (reversals-process, time scale, magnetostratigraphy) · Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetospheric configuration and dynamics)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-02-29
    Description: Swept-frequency (1-10 MHz) ionosonde measurements were made at Helston, Cornwall (50°06'N, 5°18'W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behaviour of the layer during a control day. Application to the ionosonde date for 11 August, 1999, shows that the flux of solar ionising radiation fell to a minimum of 25±2% of the value before and after the eclipse. For comparison, the same technique was also applied to measurements made during the total solar eclipse of 9 July, 1945, at Sörmjöle (63°68'N, 20°20'E) and yielded a corresponding minimum of 16±2%. Therefore the method can detect variations in the fraction of solar emissions that originate from the unobscured corona and chromosphere. We discuss the differences between these two eclipses in terms of the nature of the eclipse, short-term fluctuations, the sunspot cycle and the recently-discovered long-term change in the coronal magnetic field.Key words: Ionosphere (solar radiation and cosmic ray effects) - Radio science (ionospheric physics) - Solar physics, astrophysics, and astronomy (corona and transition region)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...