ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (6)
  • Spacecraft Propulsion and Power  (5)
  • Composite Materials  (3)
  • 2015-2019
  • 2000-2004  (14)
  • 2003  (6)
  • 2000  (8)
  • 1
    Publication Date: 2019-07-13
    Description: The methodology used and the results obtained in the pre-flight testing of the Blackjack Global Positioning System (GPS) space receiver for the Vegetation Canopy Lidar Mission (VCL) and the Ice, Cloud, and Land Elevation Satellite (ICESat) spacecraft is described. Both real and simulated signals were used to: (1) assess the accuracy and coverage of the navigation solutions, (2) assess the accuracy and stability of the 1-PPS timing signal, (3) assess the precision of the carrier phase observable, and (4) measure the cold-start time to first fix. In addition, an anechoic chamber was used to measure the antenna phase centers with millimeter-level precision. While the test results have generally been excellent and are discussed in this paper, emphasis is placed on describing the test methodology. It is anticipated that future geodetic satellite missions using GPS for navigation, timing, and precise orbit determination (POD) can employ the same tests for pre-launch performance assessment of their particular receiver.
    Keywords: Composite Materials
    Type: Global Positioning Systems; Jan 01, 2000; Salt Lake City, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Deep Space 1 Technology Validatation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium (IGARSS); Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: DS1 Technology Validation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.
    Keywords: Composite Materials
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decay/reboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-10/TS and the NASA 8 cm ion engines, and the ESA RMT and RITl0 EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a dual system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the dual system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Joint Propulsion Conference; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the utility of existing datasets and products as well as to specify the performance of new sensors and products. Examples of simulations performed for the Landsat Data Continuity Mission illustrate how various parameters affect system and product performance. Specific examples include the effects of ground sample distance, MTF, and band-to-band registration on various products.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2003-09-00084-SSC , ISPRS Commission 1/Working Group 2 International Workshop on Radiometric and Geometric Calibration; Dec 02, 2003 - Dec 05, 2003; Gulfport, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: It is known that because of complex three-dimensional (3D) radiative effects of broken clouds, the retrieval of cloud optical properties from upward measurements based on a one-dimensional (1D) inversion technique almost surely fails. To remove radiative effects of 3D cloud structure, we have developed a new technique that retrieves cloud optical thickness for broken clouds above green vegetation from simultaneous surface measurements in the VIS and Near Infrared (NIR) spectral regions. The theoretical basis of the method is the very different spectral behavior of cloud liquid water drops and green vegetation. For example, cloud optical properties, and hence cloud reflectivities, change little between 650 and 860 nm, while the vegetated surface albedo changes from 0.05 to 0.5 between the same two wavelengths. This spectral contrast in surface albedo suggests using ground measurements at both wavelengths not independently, but as an algebraic combination (a spectral index). For a spectral band in the NIR region, the green vegetation acts as a powerful reflector that "illuminates" horizontally inhomogeneous clouds from below. This provides the extra information needed to largely remove the 3D radiative effects, especially in the case of broken clouds; this in turn allows the retrieval of cloud optical depth using traditional 1D radiative transfer theory. This approach is similar to the so-called Green's function problem for radiative transfer where a laser beam illuminates clouds and the resulting "spot-size" of the reflected light around the beam characterizes cloud properties. We generalize Green's function theory to surf ace-cloud interaction and develop new spectral indices from which broken-cloud optical depth can be retrieved.
    Keywords: Earth Resources and Remote Sensing
    Type: International Radiation Symposium; Jul 24, 2000 - Jul 29, 2000; Saint Petersburg; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer toolset that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. This paper reports on the progress of EPZC including the recently added ability to exchange results the NASA Charging Analyzer Program, Nascap-2k. The capability greatly enhances EPIC's range of applicability. Expansion of the toolset's various physics models proceeds in parallel with the overall development of the software. Also presented are recent upgrades of the elastic scattering algorithm in the electric propulsion Plume Tool. These upgrades are motivated by the need to assess the effects of elastically scattered ions on the SIC for ion beam energies that exceed loo0 eV. Such energy levels are expected in future high-power (〉10 kW) ion propulsion systems empowered by nuclear sources.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2003-4871 , AIAA Joint Propulsion Conference; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).
    Keywords: Composite Materials
    Type: Materials Research Society 2003 Fall Meeting; Dec 01, 2003 - Dec 05, 2003; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...