ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Metals and Metallic Materials  (5)
  • Astrodynamics  (4)
  • 2010-2014
  • 2000-2004  (9)
  • 1925-1929
  • 2002  (4)
  • 2000  (5)
  • 1
    Publication Date: 2019-07-18
    Description: Aluminum-Lithium (Al-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional Al alloys. For example, the application of Al-Li alloy 2195 to the space shuffle external cryogenic fuel tank resulted in weight savings of over 7,000 lb, enabling successful deployment of International Space Station components. The composition and heat treatment of 2195 were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time-dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. Literature surveys have indicated that there is limited thermal exposure data on Al-Li alloys. The effort reported here was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of Al-Li alloys C458, L277, and 2195 in plate gages. Tensile, fracture toughness, and corrosion resistance were evaluated for both parent metal and friction stir welds (FSW) after exposure to temperatures as high as 300 F for up to 1000 hrs. Microstructural changes were evaluated with thermal exposure in order to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Friction stir welds of all alloys showed a drop in elongation with increased length of exposure. Understanding the effect of thermal exposure on the properties and microstructure of Al-Li alloys must be considered in defining service limiting temperatures and exposure times for a reusable cryotank structure.
    Keywords: Metals and Metallic Materials
    Type: AMPET; Sep 16, 2002 - Sep 18, 2002; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.
    Keywords: Metals and Metallic Materials
    Type: Aeromat 2000 Conference; Jun 26, 2000 - Jun 29, 2000; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit on shell thickness and mass for x-ray mirrors produced in these baths.
    Keywords: Metals and Metallic Materials
    Type: Jul 30, 2000 - Aug 04, 2000; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.
    Keywords: Metals and Metallic Materials
    Type: Rept-02M0-0638 , Aerospace Materials, Processes and Environmental Technology; Sep 16, 2002 - Sep 18, 2002; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper presents viewgraphs on the effects of thermal exposure on the mechanical properties of both developmental and production mature Al-Li alloys. The topics include: 1) Aluminum-Lithium Alloys Composition and Features; 2) Key Characteristics of Al-Li Alloys; 3) Research Approach; 4) Available and Tested Material; and 5) Thermal Exposure Matrix. The alloy temperatures, gage thickness and product forms show that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a significant deficit in mechanical properties at higher exposure temperatures in all cases.
    Keywords: Metals and Metallic Materials
    Type: AMPET 2002 Conference; Sep 16, 2002 - Sep 18, 2002; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.
    Keywords: Astrodynamics
    Type: AIAA GN&C Conference; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A decentralized control framework is investigated for applicability of formation flying control in libration orbits. The decentralized approach, being non-hierarchical, processes only direct measurement data, in parallel with the other spacecraft. Control is accomplished via linearization about a reference libration orbit with standard control using a Linear Quadratic Regulator (LQR) or the GSFC control algorithm. Both are linearized about the current state estimate as with the extended Kalman filter. Based on this preliminary work, the decentralized approach appears to be feasible for upcoming libration missions using distributed spacecraft.
    Keywords: Astrodynamics
    Type: Space Flight Dynamics; Jun 26, 2000 - Jun 30, 2000; Biarritz; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning, Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...