ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blackwell Publishing Ltd  (2)
  • 1995-1999  (2)
  • 1999  (2)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1995-1999  (2)
Jahr
  • 1
    ISSN: 1745-6584
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: In engineered in situ bioremediation, substrates are injected into the subsurface to stimulate microbial metabolism and growth. Models are useful in the design and optimization of such systems, such as in devising strategies to prevent clogging of soil by large bacterial populations around wells. Such models are macroscale, i.e., they do not resolve pore-scale variability; rather, substrate and biomass concentrations are bulk averages that vary from block to block. These models give unrealistic predictions, in that they predict monotonically increasing biomass growth everywhere except where the limiting substrate concentration is very small. This work examines the possibility of biofilm mass-transfer limitations at the pore scale using both the traditional biofilm model as well as previously published results from an upscaling model. Results from the biofilm model suggest that limitations on biofilm growth due to mass-transfer resistance could be significant in coarse-grained soils with adequate substrate availability. The upscaling approach confirms this result. While these two approaches do not yield identical results, both do agree that coarser grain sizes tend to cause greater mass transfer resistance. These are the conditions most likely to occur near injection well screens of an enhanced bioremediation system, where clogging is most commonly observed. The upscaling approach also indicates that the degree of mass transfer resistance is reduced at higher ground water velocities, which are also most commonly observed near well screens. These results could be useful for improving macroscale bioremediation models to more accurately predict rates of biomass growth and aquifer clogging.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 37 (1999), S. 0 
    ISSN: 1745-6584
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: The dispersed growth model incorporating Monod kinetics has often been applied to simulate enhanced in situ bioremediation of contaminants. The dispersed growth model might not adequately address the impacts of the growth of large bacterial populations that can often have the unwanted effect of clogging the porous media. Two mechanisms that could affect model predictions of biomass are biofouling and biomass detachment due to shear stress. A mathematical model was developed to evaluate the potential impact of shear detachment on biomass distribution and the prediction of contaminant biodegradation by comparing the impact of both shear detachment and biofouling together with that of biofouling alone. The results of this examination can aid in designing a system for in situ bioremediation using computer simulations and in evaluating a system's ability to meet remediation goals. The model simulations indicate that shear detachment of biomass can be an important process to include in model simulations used to predict the effectiveness of a bioremediation system and the time before significant clogging occurs.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...