ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two Neurospora crassa genes, trk-1 and hak-1, encode K+ transporters that show sequence similarities to the TRK transporters described in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and to the HAK transporters described in Schwanniomyces occidentalis and barley. The N. crassa TRK1 and HAK1 transporters expressed by the corresponding cDNAs in a trk1Δ trk2Δ mutant of S. cerevisiae exhibited a high affinity for Rb+ and K+. Northern blot analysis and comparison of the kinetic characteristics of the two transporters in the trk1Δ trk2Δ mutant with the kinetic characteristics of K+ uptake in N. crassa cells allowed TRK1 to be identified as the dominant K+ transporter and HAK1 as a transporter that is only expressed when the cells are K+ starved. The HAK1 transporter showed a high concentrative capacity and is identified as the K+–H+ symporter described in N. crassa, whereas TRK1 might be a K+ uniporter. Although the co-existence of K+ transporters of the TRK and HAK types in the same species had not been reported formerly, we discuss whether this co-existence may be the normal situation in soil fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Uridine diphosphate galacturonate 4-epimerases (UDPGLEs) are enzymes that convert UDP-glucuronate into UDP-galacturonate. Although the presence of UDPGLEs has been reported in prokaryotic and eukaryotic organisms, the genes coding for these enzymes are completely unknown. The galacturonic acid-containing capsular polysaccharide of Streptococcus pneumoniae type 1 is synthesized through the action of a specific UDPGLE. We have constructed a defined deletion mutant in the cap1J gene (one of the 15 cap1 genes responsible for the synthesis of the type 1 capsule) that exhibited an unencapsulated phenotype. This mutant was unable to synthesize UDPGLE, suggesting that Cap1J was the type 1-specific UDPGLE of S. pneumoniae. Escherichia coli cells harbouring the recombinant plasmid pRMM38 (cap1J ) overproduced a 40 kDa protein, characterized as Cap1J on the basis of the N-terminal amino acid sequence analysis, and expressed high levels of enzymatically active Cap1J epimerase. Cap1J was partially purified, although purification to electrophoretic homogeneity inactivated the enzyme irreversibly. The enzyme has the following characteristics: Kmfor UDP-glucuronate, 0.24 mM; pH optimum, 7.5; equilibrium constant (in the direction of UDP-galacturonate formation), 1.3; and an approximate Mr of 80 000 for the active form. The Cap1J protein exhibited a fluorescence emission spectrum similar to that of NADH. Upon inactivation with p-hydroxymercuribenzoate, the addition of NAD+ and 2-mercaptoethanol were sufficient to reactivate the enzyme. Among several compounds tested, UDP-galactose and UDP-xylose exhibited the highest inhibition of the UDPGLE activity. Inactivation of UDPGLE activity was also observed in the presence of UMP and several reducing sugars. To our knowledge, this is the first example of a thoroughly molecular characterization of a UDPGLE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium tolerance and reduced the intracellular accumulation of lithium. This phenotype was blocked by a null mutation in the cation-extrusion ATPase encoded by the ENA1/PMR2A gene, but it was not affected by inositol supplementation. As overexpression of IMPases increased intracellular free Ca2+, it is suggested that yeast IMPases are limiting for the optimal operation of the inositol cycle of calcium signalling, which modulates the Ena1 cation-extrusion ATPase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...