ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-10-23
    Description: Nonpeptide agonists of each of the five somatostatin receptors were identified in combinatorial libraries constructed on the basis of molecular modeling of known peptide agonists. In vitro experiments using these selective compounds demonstrated the role of the somatostatin subtype-2 receptor in inhibition of glucagon release from mouse pancreatic alpha cells and the somatostatin subtype-5 receptor as a mediator of insulin secretion from pancreatic beta cells. Both receptors regulated growth hormone release from the rat anterior pituitary gland. The availability of high-affinity, subtype-selective agonists for each of the somatostatin receptors provides a direct approach to defining their physiological functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohrer, S P -- Birzin, E T -- Mosley, R T -- Berk, S C -- Hutchins, S M -- Shen, D M -- Xiong, Y -- Hayes, E C -- Parmar, R M -- Foor, F -- Mitra, S W -- Degrado, S J -- Shu, M -- Klopp, J M -- Cai, S J -- Blake, A -- Chan, W W -- Pasternak, A -- Yang, L -- Patchett, A A -- Smith, R G -- Chapman, K T -- Schaeffer, J M -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biochemistry and Physiology, Merck Research Laboratories, Post Office Box 2000, Rahway, NJ 07065, USA. susanvrohrer@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784130" target="_blank"〉PubMed〈/a〉
    Keywords: Amides/metabolism/*pharmacology ; Amino Acid Sequence ; Animals ; Cell Line ; Cells, Cultured ; Cricetinae ; Drug Design ; Glucagon/secretion ; Growth Hormone/secretion ; Insulin/secretion ; Islets of Langerhans/drug effects/secretion ; Ligands ; Membrane Proteins ; Mice ; Models, Chemical ; Molecular Sequence Data ; Pituitary Gland, Anterior/drug effects/metabolism ; Rats ; Receptors, Somatostatin/*agonists/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-06-20
    Description: Activation and covalent attachment of complement component C3 to pathogens is the key step in complement-mediated host defense. Additionally, the antigen-bound C3d fragment interacts with complement receptor 2 (CR2; also known as CD21) on B cells and thereby contributes to the initiation of an acquired humoral response. The x-ray crystal structure of human C3d solved at 2.0 angstroms resolution reveals an alpha-alpha barrel with the residues responsible for thioester formation and covalent attachment at one end and an acidic pocket at the other. The structure supports a model whereby the transition of native C3 to its functionally active state involves the disruption of a complementary domain interface and provides insight into the basis for the interaction between C3d and CR2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagar, B -- Jones, R G -- Diefenbach, R J -- Isenman, D E -- Rini, J M -- New York, N.Y. -- Science. 1998 May 22;280(5367):1277-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596584" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Complement C3d/*chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Complement 3d/*metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...