ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Solar Physics  (7)
  • Polymer and Materials Science  (4)
  • General Chemistry
  • ddc:330
  • 1995-1999  (11)
  • 1998  (11)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 629-640 
    ISSN: 0887-6266
    Keywords: poly(acrylonitrile) ; two-stage draw ; morphology and tensile properties ; effect of molecular weight ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ultradrawing of atactic poly(acrylonitrile) (PAN) was investigated for a Mv series, ranging 8.0 × 104-2.3 × 106. Samples for the draw were prepared from 0.5-30 wt % solutions of PAN in N,N′-dimethylformamide. The solutions were converted to a gel by quenching from 100 to 0°C. The dried gel films were initially drawn uniaxially by solid-state coextrusion (first-stage draw) to an extrusion draw ratio (EDR) of 16, followed by further tensile draw at 100-250°C (second-stage draw). The maximum total draw ratio (DRt,max) and tensile properties achieved by two-stage draw increased remarkably with sample Mv. Other factors affecting ductility were the solution concentration from which gel was made and the second-stage draw temperature. The effects of these variables became more prominent with increasing Mv. The temperature for optimum second-stage draw increased with sample Mv. Both the initial gel and the drawn products showed no small-angle X-ray long period scattering maximum, suggesting the absence of a chain-folded lamellae structure, which had been found in our previous study on the drawing of nascent PAN powder. The chain orientation function (fc) and sample density (ρs) increased rapidly with DRt in the lower range (DRt 〈 30) and approached constant values of fc = 0.980-0.996 and ρs = 1.177-1.181 g/cm3, respectively, at higher DRt 〉 30-100. The tensile modulus also showed a similar increase with DRt. The tensile strength increased linearly with DRt, reaching a maximum, and decreased slightly at yet higher DRt. The highest modulus of 28.5 GPa and strength of 1.6 GPa were achieved with the highest Mv of 2.3 × 106. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 629-640, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1419-1422 
    ISSN: 0887-6266
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 673-679 
    ISSN: 0887-6266
    Keywords: scanning force microscopy ; hectorite ; polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Many important layered silicate-polymer nanocomposite materials may be synthesized using an in-situ polymerization process. Using this technique, organic monomers are intercalated into the interlayer regions of the hosts, where subsequent polymerization may then occur. In this paper, we report on the in-situ polymerization of styrene in Cu(II)-exchanged hectorite thin films. Scanning force microscopy (SFM) images of the polymer surface reveal that the surface polystyrene is generally aggregated into groups of elongated strands. SFM imaging of the interclay regions, in conjunction with X-ray diffraction (XRD) and electron spin resonance (ESR) data, indicates that approximately 20-30% of these regions contain polystyrene, with minimal reduction in the majority of Cu2+ sites observed. XRD data shows little or no intercalation of the monomer into the true intergallery regions. Instead, the polymer likely forms in intercrystallite or planar defect regions. In addition, two distinct phases of polymeric material are found within these defect regions, a highly polymerized polystyrene in addition to a polystyrene form exhibiting greater material stiffness. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 673-679, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2551-2562 
    ISSN: 0887-6266
    Keywords: polytetrafluoroethylene ; virgin powder ; two-stage draw ; morphology ; tensile properties ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6-20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45-100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36-48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551-2562, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-23
    Description: We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.
    Keywords: Solar Physics
    Type: Astrophysical Journal; Volume 501; 386-396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.
    Keywords: Solar Physics
    Type: SOHO 7; Sep 28, 1998 - Oct 02, 1998; Northeast Harbor, ME; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: We report on observations of the solar atmosphere in several extreme ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet sun emission observed in the 171 A - 175 A bandpass, which includes lines of 0Ov, O vi, Fe ix, and Fe x, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet sun plasma temperature of 500 000 K less than or equal to T(sub e) less than or equal to 800 000 K. Intensity modulations in the quiet sun are observed to occur on a scale comparable to the supergranular scale. The structures responsible for the quiet sun EUV emission are modeled as small quasi-static loops. We find that the emission predicted by loop models with maximum temperatures between 700 000 K and 900 000 K are consistent with our observations. We also present a preliminary comparison of the predictions of our models with observations of diagnostic spectral line ratios obtained from previous observers. We discuss the implications a distribution of loops of the type we model here would have for heating the lower transition region. Finally, in fight of the models we calculate here, we briefly review the current state of knowledge concerning the contributions thermal conduction from coronal (T(sub e) greater than or equal to 10(exp 6) K) and upper transition region (10(exp 5) K less than T(sub e) less than 10(esp 6) K) structures make to lower transition region emission. We argue that the evidence which has lead many authors to conclude that the interface of hotter and cooler plasmas makes a negligible contribution to lower transition region emission is much less compelling in light of recent observations and analyses. We further argue that it is the interface of chromospheric material with structures such as loops that have sub-coronal peak temperatures (i.e. less than 900 000 K) that makes the dominant contribution to lower transition region emission in the quiet sun.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (less than approximately 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from Yohkoh will show plenty of rapidly changing filamentary substructure in microflares.
    Keywords: Solar Physics
    Type: May 26, 1998; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: We report results from a continuation of a previous study, in which we found large bright coronal loops within active regions and extending from active regions that have one end rooted near an island of included magnetic polarity that is a site of enhanced coronal heating and microflares. This suggested that magnetic activity such as microflaring results in enhanced heating in both the compact core field around the island and in the large loops extending from it. We might expect that the intensity variations due to enhanced heating in the compact and extended structures would be correlated. However, although some ex- tended loops do respond to the largest events taking place in the core fields near their feet, they do not show a clear response to most smaller individual events nor to the overall envelope of coronal heating activity in the core fields at their feet as determined from longer-term observations. Thus, while it is clear that the extended loops' heating is being driven from their ends at the magnetic islands, much of this heating is apparently by some form of footpoint activity that is not strongly coupled to the heating in the footpoint core fields. One possibility is that the remote heating in the extended loops is driven by reconnection at the magnetic null over the island, and that this reconnection is driven mainly by core-field activity that produces little coronal heating within the core field itself, perhaps in the manner of the numerical simulations by Karpen, Antiochos, and DeVore.
    Keywords: Solar Physics
    Type: Spring 1998 AGU Meeting; May 26, 1998; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.
    Keywords: Solar Physics
    Type: SOHO 7; Sep 01, 1998; Northeast Habor, ME; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...