ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • Binding Sites  (21)
  • American Association for the Advancement of Science (AAAS)  (21)
  • Nature Publishing Group
  • Oxford University Press
  • Springer Science + Business Media
  • 1995-1999  (21)
  • 1997  (21)
Collection
  • Articles  (21)
Publisher
  • American Association for the Advancement of Science (AAAS)  (21)
  • Nature Publishing Group
  • Oxford University Press
  • Springer Science + Business Media
Years
  • 1995-1999  (21)
Year
  • 1
    Publication Date: 1997-10-23
    Description: The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Gachhui, R -- Wu, C -- Ghosh, D K -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- CA53914/CA/NCI NIH HHS/ -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):425-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9334294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Biopterin/analogs & derivatives/metabolism ; *Caenorhabditis elegans Proteins ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Enzyme Induction ; Enzyme Inhibitors/metabolism ; Guanidines/metabolism ; Heme/chemistry ; Homeodomain Proteins/chemistry/*genetics/physiology ; Hydrogen Bonding ; Imidazoles/metabolism ; Isoenzymes/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide Synthase/antagonists & inhibitors/*chemistry/metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Oxygenases/chemistry/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-09-05
    Description: The 4,639,221-base pair sequence of Escherichia coli K-12 is presented. Of 4288 protein-coding genes annotated, 38 percent have no attributed function. Comparison with five other sequenced microbes reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident. The largest family of paralogous proteins contains 80 ABC transporters. The genome as a whole is strikingly organized with respect to the local direction of replication; guanines, oligonucleotides possibly related to replication and recombination, and most genes are so oriented. The genome also contains insertion sequence (IS) elements, phage remnants, and many other patches of unusual composition indicating genome plasticity through horizontal transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blattner, F R -- Plunkett, G 3rd -- Bloch, C A -- Perna, N T -- Burland, V -- Riley, M -- Collado-Vides, J -- Glasner, J D -- Rode, C K -- Mayhew, G F -- Gregor, J -- Davis, N W -- Kirkpatrick, H A -- Goeden, M A -- Rose, D J -- Mau, B -- Shao, Y -- P01 HG01428/HG/NHGRI NIH HHS/ -- S10 RR10379/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1453-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, University of Wisconsin-Madison, 445 Henry Mall, Madison, WI 53706, USA. ecoli@genetics.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278503" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Bacteriophage lambda/genetics ; Base Composition ; Binding Sites ; Chromosome Mapping ; DNA Replication ; DNA Transposable Elements ; DNA, Bacterial/genetics ; Escherichia coli/*genetics ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mutation ; Operon ; RNA, Bacterial/genetics ; RNA, Transfer/genetics ; Recombination, Genetic ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-03-07
    Description: The blue-light photoreceptor photoactive yellow protein (PYP) undergoes a self-contained light cycle. The atomic structure of the bleached signaling intermediate in the light cycle of PYP was determined by millisecond time-resolved, multiwavelength Laue crystallography and simultaneous optical spectroscopy. Light-induced trans-to-cis isomerization of the 4-hydroxycinnamyl chromophore and coupled protein rearrangements produce a new set of active-site hydrogen bonds. An arginine gateway opens, allowing solvent exposure and protonation of the chromophore's phenolic oxygen. Resulting changes in shape, hydrogen bonding, and electrostatic potential at the protein surface form a likely basis for signal transduction. The structural results suggest a general framework for the interpretation of protein photocycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Genick, U K -- Borgstahl, G E -- Ng, K -- Ren, Z -- Pradervand, C -- Burke, P M -- Srajer, V -- Teng, T Y -- Schildkamp, W -- McRee, D E -- Moffat, K -- Getzoff, E D -- GM36452/GM/NIGMS NIH HHS/ -- GM37684/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1471-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9045611" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/physiology ; Binding Sites ; Chromatiaceae ; Crystallography, X-Ray ; Electrochemistry ; Hydrogen Bonding ; Isomerism ; Light ; Models, Molecular ; *Photoreceptors, Microbial ; *Protein Conformation ; Signal Transduction ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-09-20
    Description: The crystal structure of pentalenene synthase at 2.6 angstrom resolution reveals critical active site features responsible for the cyclization of farnesyl diphosphate into the tricyclic hydrocarbon pentalenene. Metal-triggered substrate ionization initiates catalysis, and the alpha-barrel active site serves as a template to channel and stabilize the conformations of reactive carbocation intermediates through a complex cyclization cascade. The core active site structure of the enzyme may be preserved among the greater family of terpenoid synthases, possibly implying divergence from a common ancestral synthase to satisfy biological requirements for increasingly diverse natural products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesburg, C A -- Zhai, G -- Cane, D E -- Christianson, D W -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1820-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295272" target="_blank"〉PubMed〈/a〉
    Keywords: *Alkyl and Aryl Transferases ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cyclization ; Cyclopentanes/chemical synthesis/chemistry ; Geranyltranstransferase ; *Intramolecular Lyases ; Isomerases/*chemistry/metabolism ; Models, Molecular ; Polyisoprenyl Phosphates/chemistry/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Sesquiterpenes ; Streptomyces/*enzymology ; Transferases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-02-21
    Description: The x-ray structures of three esterase-like catalytic antibodies identified by screening for catalytic activity the entire hybridoma repertoire, elicited in response to a phosphonate transition state analog (TSA) hapten, were analyzed. The high resolution structures account for catalysis by transition state stabilization, and in all three antibodies a tyrosine residue participates in the oxyanion hole. Despite significant conformational differences in their combining sites, the three antibodies, which are the most efficient among those elicited, achieve catalysis in essentially the same mode, suggesting that evolution for binding to a single TSA followed by screening for catalysis lead to antibodies with structural convergence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Charbonnier, J B -- Golinelli-Pimpaneau, B -- Gigant, B -- Tawfik, D S -- Chap, R -- Schindler, D G -- Kim, S H -- Green, B S -- Eshhar, Z -- Knossow, M -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1140-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, 91198 Gif sur Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027317" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/*chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Enzyme-Linked Immunosorbent Assay ; *Evolution, Molecular ; Haptens/chemistry/metabolism ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Organophosphonates/chemistry/metabolism ; *Protein Conformation ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-23
    Description: During translation errors of aminoacylation are corrected in editing reactions which ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). Previous studies have not shown whether the tRNA nucleotides needed for effecting translational editing are the same as or distinct from those required for aminoacylation, but several considerations have suggested that they are the same. Here, designed tRNAs that are highly active for aminoacylation but are not active in translational editing are presented. The editing reaction can be controlled by manipulation of nucleotides at the corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacylation. These results demonstrate the segregation of nucleotide determinants for the editing and aminoacylation functions of tRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hale, S P -- Auld, D S -- Schmidt, E -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 23;276(5316):1250-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157882" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Binding Sites ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Transfer/*metabolism ; RNA, Transfer, Ile/chemistry/metabolism ; RNA, Transfer, Val/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-07-18
    Description: A genetic block was introduced in the first condensation step of the polyketide biosynthetic pathway that leads to the formation of 6-deoxyerythronolide B (6-dEB), the macrocyclic precursor of erythromycin. Exogenous addition of designed synthetic molecules to small-scale cultures of this null mutant resulted in highly selective multimilligram production of unnatural polyketides, including aromatic and ring-expanded variants of 6-dEB. Unexpected incorporation patterns were observed, illustrating the catalytic versatility of modular polyketide synthases. Further processing of some of these scaffolds by postpolyketide enzymes of the erythromycin pathway resulted in the generation of novel antibacterials with in vitro potency comparable to that of their natural counterparts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobsen, J R -- Hutchinson, C R -- Cane, D E -- Khosla, C -- CA66736/CA/NCI NIH HHS/ -- GM22172/GM/NIGMS NIH HHS/ -- GM31925/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):367-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219693" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bacillus cereus/drug effects/growth & development ; Binding Sites ; Catalysis ; Cyclization ; Erythromycin/*analogs & derivatives/biosynthesis/pharmacology ; Microbial Sensitivity Tests ; Multienzyme Complexes/*genetics/*metabolism ; *Mutagenesis, Site-Directed ; Saccharopolyspora/genetics/metabolism ; Streptomyces/enzymology/genetics/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-06-20
    Description: Bactericidal/permeability-increasing protein (BPI), a potent antimicrobial protein of 456 residues, binds to and neutralizes lipopolysaccharides from the outer membrane of Gram-negative bacteria. At a resolution of 2.4 angstroms, the crystal structure of human BPI shows a boomerang-shaped molecule formed by two similar domains. Two apolar pockets on the concave surface of the boomerang each bind a molecule of phosphatidylcholine, primarily by interacting with their acyl chains; this suggests that the pockets may also bind the acyl chains of lipopolysaccharide. As a model for the related plasma lipid transfer proteins, BPI illuminates a mechanism of lipid transfer for this protein family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beamer, L J -- Carroll, S F -- Eisenberg, D -- GM31299/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1861-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188532" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antimicrobial Cationic Peptides ; Binding Sites ; Blood Bactericidal Activity ; Blood Proteins/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Humans ; Lipopolysaccharides/metabolism ; *Membrane Proteins ; Models, Molecular ; Molecular Sequence Data ; Phosphatidylcholines/chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sacchettini, J C -- Poulter, C D -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1788-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Texas A & M University, College Station, TX 77843-2128, USA. sacchett@seabass.tamu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9324768" target="_blank"〉PubMed〈/a〉
    Keywords: *Alkyl and Aryl Transferases ; Binding Sites ; Carotenoids/biosynthesis ; Catalysis ; Cyclization ; Geranyltranstransferase ; *Intramolecular Lyases ; *Intramolecular Transferases ; Isomerases/*chemistry/metabolism ; Protein Folding ; Sterols/biosynthesis ; Terpenes/*metabolism ; Transferases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-07-04
    Description: On the basis of x-ray diffraction data to a resolution of 2.9 angstroms, atomic models of most protein components of the bovine cytochrome bc1 complex were built, including core 1, core 2, cytochrome b, subunit 6, subunit 7, a carboxyl-terminal fragment of cytochrome c1, and an amino-terminal fragment of the iron-sulfur protein. The positions of the four iron centers within the bc1 complex and the binding sites of the two specific respiratory inhibitors antimycin A and myxothiazol were identified. The membrane-spanning region of each bc1 complex monomer consists of 13 transmembrane helices, eight of which belong to cytochrome b. Closely interacting monomers are arranged as symmetric dimers and form cavities through which the inhibitor binding pockets can be accessed. The proteins core 1 and core 2 are structurally similar to each other and consist of two domains of roughly equal size and identical folding topology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, D -- Yu, C A -- Kim, H -- Xia, J Z -- Kachurin, A M -- Zhang, L -- Yu, L -- Deisenhofer, J -- GM 30721/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):60-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimycin A/metabolism/pharmacology ; Binding Sites ; Cattle ; Crystallography, X-Ray ; Cytochrome b Group/chemistry ; Cytochromes c1/chemistry ; Dimerization ; Electron Transport Complex III/*chemistry/metabolism ; Intracellular Membranes/enzymology ; Iron/metabolism ; Methacrylates ; Mitochondria, Heart/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thiazoles/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...