ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society  (88)
  • American Geophysical Union  (23)
  • Springer Nature  (22)
  • American Society of Hematology  (8)
  • Blackwell Science Ltd  (8)
  • 1995-1999  (149)
  • 1985-1989
  • 1999  (79)
  • 1997  (70)
Collection
Years
  • 1995-1999  (149)
  • 1985-1989
Year
  • 1
  • 2
    Publication Date: 1999-12-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE. Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium. To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium. We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL, being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL. This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity (ram) phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: During flagellum assembly by motile enterobacteria, flagellar axial proteins destined for polymerization into the cell surface structure are thought to be exported through the 25–30 Å flagellum central channel as partially unfolded monomers. How are premature folding and oligomerization in the cytosol prevented? We have shown previously using hyperflagellated Proteus mirabilis and a motile but non-swarming flgN transposon mutant that the apparently cytosolic 16.5 kDa flagellar protein FlgN facilitates efficient flagellum filament assembly. Here, we investigate further whether FlgN, predicted to contain a C-terminal amphipathic helix typical of type III export chaperones, acts as a chaperone for axial proteins. Incubation of soluble radiolabelled FlgN from Salmonella typhimurium with nitrocellulose-immobilized cell lysates of wild-type S. typhimurium and a non-flagellate class 1 flhDC mutant indicated that FlgN binds to flagellar proteins. Identical affinity blot analysis of culture supernatants from the wild-type and flhDC, flgI, flgK, flgL, fliC or fliD flagellar mutants showed that FlgN binds to the flagellar hook-associated proteins (HAPs) FlgK and FlgL. This was confirmed by blotting artificially expressed individual HAPs in Escherichia coli. Analysis of axial proteins secreted into the culture medium by the original P. mirabilis flgN mutant demonstrated that export of FlgK and FlgL was specifically reduced, with concomitant increased release of unpolymerized flagellin (FliC), the immediately distal component of the flagellum. These data suggest that FlgN functions as an export chaperone for FlgK and FlgL. Parallel experiments showed that FliT, a similarly small (14 kDa), potentially helical flagellar protein, binds specifically to the flagellar filament cap protein, FliD (HAP2), indicating that it too might be an export chaperone. Flagellar axial proteins all contain amphipathic helices at their termini. Removal of the HAP C-terminal helical domains abolished binding by FlgN and FliT in each case, and polypeptides comprising each of the HAP C-termini were specifically bound by FlgN and FliT. We suggest that FlgN and FliT are substrate-specific flagellar chaperones that prevent oligomerization of the HAPs by binding to their helical domains before export.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A transposon (Tn10dCam) insertion mutant of Escherichia coli K-12 was isolated that exhibited hypersensitivity to zinc(II) and cadmium(II) and, to a lesser extent, cobalt(II) and nickel (II). The mutated gene, located between 75.5 and 76.2 min on the chromosome, is named zntA (for Zn(II) transport or tolerance). The metal-sensitive phenotype was complemented by a genomic DNA clone mapping at 3677.90–3684.60 kb on the physical map. Insertion of a kanamycin resistance (KnR) cassette at a Sal I site in a subcloned fragment generated a plasmid that partially complemented the zinc(II)-sensitive phenotype. DNA sequence analysis revealed that the KnR cassette was located within the putative promoter region of an ORF (o732 or yhhO) predicted to encode a protein of 732 amino acids, similar to cation transport P-type ATPases in the Cpx-type family. Inverse PCR and sequence analysis revealed that the Tn10dCam element was located within o732 in the genome of the zinc(II)-sensitive mutant. The zntA mutant had elevated amounts of intracellular and cell surface-bound Zn(II), consistent with the view that zntA+ encodes a zinc(II) efflux protein. Exposure of the zntA mutant to cobalt(II) and cadmium(II) also resulted in elevated levels of intracellular and cell surface-bound metal ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The 110 kDa haemolysin protoxin (proHlyA) is activated in the Escherichia coli cytosol by acyl carrier protein-dependent fatty acylation of two internal lysine residues, directed by the co-synthesized protein HlyC. Using an in vitro maturation reaction containing purified protoxin peptides and acylACP, we show unambiguously that HlyC possesses an apparently unique acyltransferase activity fully described by Michaelis–Menten analysis. The Vmax of HlyC at saturating levels of both substrates was ≈ 115 nmol acyl group min−1 mg−1 with KmacylACP of 260 nM and KmproHlyA of 27 nM, kinetic parameters sufficient to explain why in vivo HlyC is required at a concentration equimolar to proHlyA. HlyC bound the fatty acyl group from acylACP to generate an acylated HlyC intermediate that was depleted in the presence of proHlyA, but enriched in the presence of proHlyA derivatives lacking acylation target sites. HlyC was also able to bind in vivo 4′-phosphopantetheine. Substitution of conserved amino acids that could act as putative covalent attachment sites did not prevent binding of the fatty acyl or 4′-phosphopantetheine groups. These data and substrate variation analyses suggest that the unique acylation reaction does not involve covalent attachment of fatty acid to the acyltransferase, but rather that it proceeds via a sequential ordered Bi–Bi reaction mechanism, requiring the formation of a non-covalent ternary acylACP–HlyC–proHlyA complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 25 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A TnphoA mutant of Proteus mirabilis was isolated, which had lost the ability to swarm, yet was still motile. The transposon had inserted into flgN, a flagella gene encoding a 147-amino-acid protein of undefined function. Proteus flgN is arranged in an operon with the class III anti-σ28 gene, flgM, flanked by the class II genes, flgA, flgBCD and flhBA, and a novel putative virulence-related gene. The flgN mutation caused a substantial reduction in cell surface-associated flagellin, particularly during differentiation to the normally hyperflagellated swarm cell. This was not due to an effect on flagella gene expression or a typical defect in the flagella export apparatus as there was no class III gene downregulation by FlgM feedback, or intracellular flagellin accumulation. Loss of FlgN nevertheless caused a severe reduction in the incorporation of pulse-labelled flagellin into the membrane/flagellum fraction of differentiating cells. Substantial amounts of both non-oligomeric flagellin and flagellin degradation products appeared in the extracellular medium, although the few mature filaments made by the mutant were no more sensitive to proteolysis than those of the wild type. FlgN appeared soluble and active in the cytosol. The data suggest that the function of FlgN is to facilitate the initiation of flagella filament assembly, a role that may be especially critical in attaining the much higher concentration of surface flagellin required for swarming. Proteus FlgN has leucine zipper-like motifs arranged on potential amphipathic helices, a feature conserved in cytosolic chaperones for the exported substrates of flagella-related type III virulence systems. While gel filtration of FlgN from the soluble cell fraction did not establish an interaction with flagellin, it indicated that FlgN may associate with an unknown component and/or form an oligomer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Hin recombinase mediates the site-specific inversion of a segment of the Salmonella chromosome between two flanking 26 bp hix DNA recombination sites. Mutations in two amino acid residues, R43 and R69 of the catalytic domain of the Hin recombinase, were identified that can compensate for loss of binding resulting from elimination of certain major and minor groove contacts within the hix recombination sites. With one exception, the R43 and R69 mutants were also able to bind a hix sequence with an additional 4 bp added to the centre of the site, unlike wild-type Hin. Purified Hin mutants R43H and R69C had both partial cleavage and inversion activities in vitro while mutants R43L, R43C, R69S, and R69P had no detectable cleavage and inversion activities. These data support a model in which the catalytic domain plays a role in DNA-binding specificity, and suggest that the arginine residues at positions 43 and 69 function to position the Hin recombinase on the DNA for a step in the recombination reaction which occurs either at and/or prior to DNA cleavage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 26 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The RfaH protein controls the transcription of a specialized group of Escherichia coli and Salmonella operons that direct the synthesis, assembly and export of the lipopolysaccharide core, exopolysaccharide, F conjugation pilus and haemolysin toxin. RfaH is a specific regulator of transcript elongation; its loss increases transcription polarity in these operons without affecting initiation from the operon promoters. The operons of the RfaH-dependent regulon contain a short conserved 5′ sequence, the ops element, deletion of which increases operon polarity to an extent similar to that caused by loss of RfaH. The ops element is also present upstream of polysaccharide gene clusters of Shigella flexneri, Yersinia enterocolitica, Vibrio cholerae and Klebsiella pneumoniae and the RP4 fertility operon of Pseudomonas aeruginosa, suggesting that this is a widely spread control system. The mechanistic coupling of RfaH and the ops element has been demonstrated in vitro and in vivo, and we suggest that the ops element recruits RfaH and potentially other factors to the RNA polymerase complex, modifying the complex to increase its processivity and allowing transcription to proceed over long distances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, U.K. and Cambridge, USA : Blackwell Science Ltd
    Plant pathology 48 (1999), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...